Skip to main content
Log in

Bistable dynamics of cardiac cell models coupled by dynamic gap junctions linked to Cardiac Memory

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

In an earlier study, we suggested that adaptive gap junctions (GJs) might be a basis of cardiac memory, a phenomenon which refers to persistent electrophysiological response of the heart to external pacing. Later, it was also shown that the proposed mechanism of adaptation of GJs is consistent with known electrophysiology of GJs. In the present article, we show that a pair of cardiac cell models coupled by dynamic, voltage-sensitive GJs exhibits bistable behavior under certain conditions. Three kinds of cell pairs are considered: (1) a Noble–Noble cell pair that represents adjacent cells in Purkinje network, (2) a pair of DiFranceso–Noble cells that represents adjacent SA nodal cells, and (3) a model of Noble cell coupled to Luo–Rudy cell model, which represents an interacting pair of a Purkinje fiber and a ventricular myocyte. Bistability is demonstrated in all the three cases. We suggest that this bistability might be an underlying factor behind cardiac memory. Focused analysis of a pair of Noble cell models showed that bistability is obtained only when the properties of GJs “match” with the properties of the pair of cells that is coupled by the GJs. This novel notion of match between GJs and cardiac cell types might give an insight into specialized distributions of various connexin proteins in cardiac tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baigent S, Jaroslav S, Warner A (1997) Modeling the effect of gap junction nonlinearities in systems of coupled cells. J Theor Biol 186: 223–239

    Article  Google Scholar 

  • Coppen SR, Severs NJ, Gourdie RG (1999a) Connexin45 (α 6) expression declineates an extended conduction system in the embryonic and mature rodent heart. Dev Genet 24: 82–90

    Article  CAS  PubMed  Google Scholar 

  • Coppen SR, Kodama I, Boyett MR, Dobrzynski H, Takagishi Y, Honjo H, Yeh HI, Severs NJ (1999b) Connexin45, a major connexin of the rabbit sinoatrial node, is co-expressed with connexin43 in a restricted zone at the Nodal–Crista terminals border. J Histochem Cytochem 47: 907–918

    CAS  PubMed  Google Scholar 

  • Chakravarthy VS, Ghosh J (1997) On Hebbian-like adaption in heart muscle: a proposal for “Cardiac Memory”. Biol Cybern 76: 207–215

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee K, Harri A, Davies G, Leatham A (1969) Electrocardiographic changes subsequent to artificial ventricular depolarization. Br Heart J 31: 770–779

    Article  CAS  PubMed  Google Scholar 

  • De Mello WC (1998) Cell to cell communication in the failing heart. In: De Mello WC, Janse MJ (eds) Heart cell communication in health and disease. Kluwer Academic Publishers, Boston, pp 149–173

    Google Scholar 

  • Del Balzo U, Rosen MR (1992) T-wave changes persisting after ventricular pacing in canine heart are altered by 4-aminopyridine but not by lidocaine: implications with respect to phenomenon of “cardiac memory”. Circulation 85: 1464–1472

    CAS  PubMed  Google Scholar 

  • Dhein S, Krusemann K, Schaefer T (1999) Effects of the gap junction uncoupler palmitoleic acid on the activation and repolarization wavefronts in isolated rabbit hearts. Br J Pharmacol 128: 1375–1384

    Article  CAS  PubMed  Google Scholar 

  • DiFrancesco D, Noble D (1985) A model of electric activity incorporating ionic pumps and concenteration changes. Phil Trans R Soc Lond B307: 353–398

    Google Scholar 

  • Gibbs HM, McCall SL, Venkatesan TNC (1980) Optical bistable devices: the basic components of all-optical systems. Opt Eng 19: 463–468

    CAS  Google Scholar 

  • Gourdie RG, Lo CW (2000) Cx43 (α 1) gap junctions in cardiac development and disease. Curr Top Membr 49: 581–602

    Article  CAS  Google Scholar 

  • Gourdie RG, Severs NJ, Green CR, Rothery S, Germroth P, Thompson RP (1993) The spatial distribution and relative abundance of gap junctional connexin40 and connexin43 correlate to functional properties of components of the cardiac atrioventricular conduction system. J Cell Sci 105: 985–991

    CAS  PubMed  Google Scholar 

  • Gros DB, Jongsma HJ (1996) Connexin in mammalian heart function. Bioessays 18: 719–730

    Article  CAS  PubMed  Google Scholar 

  • Guyton AC, Hall JE (2000) Textbook of Medical Physiology, 10th edn. W.B. Saunders, Philadelphia

    Google Scholar 

  • Haefliger JA, Polikar R, Schnyder G, Burdet M, Sutter E, Pexieder T, Nicod P, Meda P (2000) Connexin37 in normal and pathological development of mouse heart and great arteries. Dev Dyn 218: 331–344

    Article  CAS  PubMed  Google Scholar 

  • Harris ALM, Hutter OF, Noble D (1983) Control of intercellular communication by voltage dependence of gap junctional conductance. J Neurosci 3: 79–100

    CAS  PubMed  Google Scholar 

  • Henriquez AP, Vogel R, Muller-Borer BJ, Henriquez CS, Weingart R, Cascio WE (2001) Influence of dynamic gap junction resistance on impulse propagation in ventricular myocardium: a computer simulation study. Biophys J 81: 2112–2121

    Article  CAS  PubMed  Google Scholar 

  • Krishnan J, Chakravarthy VS, Radhakrishnan S (2005) On the role of gap junctions on cardiac memory effect. Comput Cardiol 32: 13–17

    Article  Google Scholar 

  • Krishnan J, Sachdeva G, Chakravarthy VS, Radhakrishnan S (2008) Interpreting voltage-sensitivity of gap junctions as a mechanism of cardiac memory. Math Biosci 212(2): 132–148

    Article  CAS  PubMed  Google Scholar 

  • Lin X, Gemel J, Beyer EC, Veenstra RD (2004) Dynamic model for ventricular junctional conductance during the cardiac action potential. Am J Physiol Heart Circ Physiol 288: H1113–H1123

    Article  PubMed  Google Scholar 

  • Luke RA, Saffitz JE (1991) Remodeling of ventricular conduction pathways in healed canine infarct border zones. J Clin Invest 87: 1594–1602

    Article  CAS  PubMed  Google Scholar 

  • Luo CH, Rudy Y (1991) A model of the ventricular cardiac action potential. Circ Res 68(6): 1501–1526

    CAS  PubMed  Google Scholar 

  • Luo–Rudy Model from the CellML Repository, http://www.cellml.org/models/luo_rudy_1991_version03

  • Michaels DC, Matyas EP, Jalife J (1986) Dynamic interactions and mutual synchronization of sinoatrial node pacemaker cells: a mathematical model. Circ Res 58: 706–720

    CAS  PubMed  Google Scholar 

  • Montague PR, Sejnowski TJ (1994) The predictive brain: temporal coincidence and temporal order in synaptic learning mechanisms. Learn Mem 1: 1–33

    CAS  PubMed  Google Scholar 

  • Noble D (1960) A Modification of the Hodgkin–Huxley equations applicable to Purkinje fibre action and pacemaker potentials. J Physiol 160: 317–352

    Google Scholar 

  • Patel PM, Plotnikov A, Kanagaratnam P, Shvilkin A, Sheehan CT, Xiong W, Danilo P Jr, Rosen MR, Peters NS (2001) Altering ventricular activation remodels gap junction distribution in canine heart. Cardiovasc Electrophysiol 12: 570–577

    Article  CAS  Google Scholar 

  • Peters NS, Green CR, Poole-Wilson PA, Severs NJ (1993) Reduced content of connexin43 gap junctions in ventricular myocardium from hypertrophied and ischemic human hearts. Circulation 88: 864–875

    CAS  PubMed  Google Scholar 

  • Phelan P, Starich TA (2001) Innexins get into the gap. BioEssays 23: 388–396

    Article  CAS  PubMed  Google Scholar 

  • Plotnikov AN, Yu H, Geller JC, Gainullin RZ, Chandra P, Patberg KW, Friezema S, Danilo P, Cohen IS, Feinmark SJ, Rosen MR (2003) Role of L-type calcium channels in pacing-induced short-term and long-term cardiac memory in canine heart. Circulation 107(22): 2844–2849

    Article  CAS  PubMed  Google Scholar 

  • Pradhan B, Batabyal SK, Pal AJ (2006) Electrical bistability and memory phenomenon in carbon nanotube-conjugated polymer matrixes. Phys Chem B 110(16): 8274–8277

    Article  CAS  Google Scholar 

  • Rohr S (2004) Role of gap junctions in the propagation of the cardiac action potential. Cardiovasc Res 62(2): 309–322

    Article  CAS  PubMed  Google Scholar 

  • Rosen MR (2001) The heart remembers: clinical applications. Lancet 357: 468–471

    Article  CAS  PubMed  Google Scholar 

  • Rosen MR, Binah O, Marom S (2003) Cardiac memory and cortical memory: do learning patterns in neural networks impact on cardiac arrhythmias? Circulation 108: 1784–1789

    Article  PubMed  Google Scholar 

  • Rosenbaum MB, Blanco HH, Elizari MV, Lazzari JO, Davidenko JM (1982) Electronic modulation of the T wave and cardiac memory. Am J Cardiol 50: 213–222

    Article  CAS  PubMed  Google Scholar 

  • Saffitz JE (1997) Gap junctions: functional effects of molecular structure and tissue distribution. Adv Exp Med Biol 430: 291–301

    CAS  PubMed  Google Scholar 

  • Saffitz JE, Kanter HL, Green KG, Tolley TK, Beyer EC (1994) Tissue-specific determinants of anisotropic conduction velocity in canine atrial and ventricular myocardium. Circ Res 74: 1065–1070

    CAS  PubMed  Google Scholar 

  • Severs NJ (1994) Pathophysiology of gap junctions in heart disease. J Cardiovasc Electrophysiol 5: 462–475

    Article  CAS  PubMed  Google Scholar 

  • Shvilkin A, Danilo P Jr, Wang J, Burkhoff D, Anyukhovsky EP, Sosunov EA, Hara M, Rosen MR (1998) The evolution and resolution of long-term cardiac memory. Circulation 97: 1810–1817

    CAS  PubMed  Google Scholar 

  • Smith CG (1997) Bistable memory element. U.S. Patent No. 5677823

  • Van Kempen MJA, Ten Velde I, Wessels A, Oosthock PW, Gros D, Jongsma HJ, Moorman AFM, Lamers WH (1995) Differential connexin distribution accommodates cardiac function in different species. Microsc Res Tech 31: 420–436

    Article  PubMed  Google Scholar 

  • Veenstra RD, Wang HZ, Westphale EM, Beyer EC (1992) Multiple connexins confer distinct regulatory and conductance properties of gap junctions in developing heart. Circ Res 71: 1277–1283

    CAS  PubMed  Google Scholar 

  • Vogel R, Weingart R (1998) Mathematical model of vertebrate gap junctions derived from electrical measurements on homotypic and heterotypic channels. J Physiol 510(Pt 1): 177–189

    Article  CAS  PubMed  Google Scholar 

  • Winslow RL, Cai D, Lai YC (1994) Network models of the SA node. Proceedings of the IFAC Symposium on Modeling and Control in Biomedical Systems, pp 86–92

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Chakravarthy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sachdeva, G., Kalyanasundaram, K., Krishnan, J. et al. Bistable dynamics of cardiac cell models coupled by dynamic gap junctions linked to Cardiac Memory. Biol Cybern 102, 109–121 (2010). https://doi.org/10.1007/s00422-009-0352-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-009-0352-3

Keywords

Navigation