Skip to main content
Log in

Fast estimation of motion from selected populations of retinal ganglion cells

  • Original Article
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

We explore how the reconstruction efficiency of fast spike population codes varies with population size, population composition and code complexity. Our study is based on experiments with moving light patterns which are projected onto the isolated retina of a turtle Pseudemys scripta elegans. The stimulus features to reconstruct are sequences of velocities kept constant throughout segments of 500 ms. The reconstruction is based on the spikes of a retinal ganglion cell (RGC) population recorded extracellularly via a multielectrode array. Subsequent spike sorting yields the parallel spike trains of 107 RGCs as input to the reconstruction method, here a discriminant analysis trained and tested in jack-knife fashion. Motivated by behavioral response times, we concentrate on fast reconstruction, i.e., within 150 ms following a trigger event defined via significant changes of the population spike rate. Therefore, valid codes involve only few (≤3) spikes per cell. Using only the latency t 1 of each cell (with reference to the trigger event) corresponds to the most parsimonious population code considered. We evaluate the gain in reconstruction efficiency when supplementing t 1 by spike times t 2 and t 3. Furthermore, we investigate whether sub-populations of smaller size benefit significantly from a selection process or whether random compilations are equally efficient. As selection criteria we try different concepts (directionality, reliability, and discriminability). Finally, we discuss the implications of a selection process and its inter-relation with code complexity for optimized reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ammermueller J, Muller JF, Kolb H (1995) The organization of the turtle inner retina: II. Analysis of color-coded and directionally selective cells. J Comp Neurol 358: 35–62

    Article  Google Scholar 

  • Barnes GR (2008) Cognitive processes involved in smooth pursuit eye movements. Brain Cogn. 68: 309–326

    Article  PubMed  CAS  Google Scholar 

  • Behrens R, Collewijn H, Grusser OJ (1985) Velocity step responses of the human gaze pursuit system. Experiments with sigma-movement. Vis Res 25: 893–905

    CAS  Google Scholar 

  • Chichilnisky EJ, Kalmar ER (2003) Temporal resolution of ensemble visual motion signals in primate retina. J Neurosci 23(17): 6681–6689

    PubMed  CAS  Google Scholar 

  • Dunteman GH (1984) Introduction to multivariate analysis. Sage Publications Inc., Beverly Hills, California, USA, pp 107–152

    Google Scholar 

  • Fernández E, Ferrández JM, Ammermueller J, Normann RA (2000) Population coding in spike trains of simultaneously recorded retinal ganglion cells. Brain Res 887: 222–229

    Article  PubMed  Google Scholar 

  • Ferrández JM, Bongard M, Garcíade Quirós F, Bolea JA, Ammermueller J, Normann RA, Fernández E (2001) Decoding the population responses of retinal ganglions cells using information theory: connectionist models of neurons, learning processes and artificial intelligence. Lecture notes in computer science 2084. Springer-Verlag, Heidelberg

    Google Scholar 

  • Ferrández JM, Bongard M, García de Quiráos F, Bolea JA, Fernández E (2002) Neural coding analysis in retinal ganglion cells using information theory. Lecture notes in computer science 2415

  • Frechette ES, Sher A, Grivich MI, Petrusca D, Litke AM, Chichilnisky EJ (2005) Fidelity of the ensemble code for visual motion in primate retina. J Neurophys 94: 119–135

    Article  CAS  Google Scholar 

  • Freund JA, Schimansky-Geier L, Beisner B, Neiman A, Russell DF, Yakusheva T, Moss F (2002) Behavioral stochastic resonance: how the noise from a Daphnia swarm enhances individual prey capture by juvenile paddlefish. J Theor Biol 214: 71–83

    Article  PubMed  Google Scholar 

  • Gautrais J, Thorpe S (1998) Rate coding versus temporal order coding: a theoretical approach. Biosystems 48: 57–65

    Article  PubMed  CAS  Google Scholar 

  • Gollisch T, Meister M (2008) Rapid neural coding in the retina with relative spike latencies. Science 319: 1108–1111

    Article  PubMed  CAS  Google Scholar 

  • Granda AM, Fulbrook JE (1989) Classification of turtle retinal ganglion cells. J Neurophys 62(3): 723–737

    CAS  Google Scholar 

  • Green DM, Swets JA (1966) Signal detection theory and psychophysics. Wiley, New York

    Google Scholar 

  • Greschner M, Thiel A, Kretzberg J, Ammermueller J (2006) Complex spike-event pattern of transient \({{\tt ON-OFF}}\) retinal ganglion cells. J Neurophys 96(6): 2845–2856

    Article  Google Scholar 

  • Lewicki MS (1998) A review of methods for spike sorting: the detection and classification of neural action potentials. Network 9(4): R53–R78

    Article  PubMed  CAS  Google Scholar 

  • Lisberger SG, Morris EJ, Tychsen L (2003) Visual motion processing and sensory-motor integration for smooth pursuit eye movements. Annu Rev Neurosci 10: 97–129

    Article  Google Scholar 

  • Manly BFJ (2004) Multivariate statistical merhods: a primer, 3rd edn. Chapman & Hall/CRC, USA, pp 105–108

    Google Scholar 

  • Meister M, Berry MJ II (1999) The neural code of the retina. Neuron 22: 435–450

    Article  PubMed  CAS  Google Scholar 

  • Pola J, Wyatt HJ (1991) Smooth pursuit: response characteristics, stimuli, and mechanisms. In: Carpenter RHS (eds) Vision and visual dysfunction. The Macmillan Press Ltd, London

    Google Scholar 

  • Robinson DA (1965) The mechanics of human smooth pursuit eye movement. J Physiol, Lond 180: 569–591

    PubMed  CAS  Google Scholar 

  • Schreiber S, Fellous JM, Whitmer D, Tiesinga P, Sejnowski TJ (2003) A new correlation-based measure of spike timing reliability. Neurocomputing 52–54: 925–931

    Article  PubMed  Google Scholar 

  • Stemmler M (1996) A single spike suffices: the simplest form of stochastic resonance in model neurons. Network 7: 687–716

    Article  Google Scholar 

  • Taketani, M, Baudry, M (eds) (2006) Advances in network electrophysiology using multi-electrode arrays. Springer, Berlin

    Google Scholar 

  • Thiel A, Greschner M, Eurich CW, Ammermueller J, Kretzberg J (2007) Contribution of individual retinal ganglion cell response to velocity and acceleration encoding. J Neurophys 98: 1–12

    Article  Google Scholar 

  • Thorpe S, Fize D, Marlot C (1996) Speed of processing in the human visual system. Nature 381: 520–522

    Article  PubMed  CAS  Google Scholar 

  • Thorpe S, Delorme A, Van Rullen R (2001) Spike-based strategies for rapid processing. Neural Netw 14: 715–725

    Article  PubMed  CAS  Google Scholar 

  • Uzzell VJ, Chichilnisky EJ (2004) Precision of spike trains in primate retinal ganglion cells. J Neurophys 92: 780–789

    Article  CAS  Google Scholar 

  • Warland D, Reinagel P, Meister M (1997) Decoding visual information from a population of retinal ganglion cells. J Neurophys 78: 2336–2350

    CAS  Google Scholar 

  • Winzenborg I, Thiel A, Harmand P, Greschner M, Kretzberg J (2010) Reconstruction of stimulus features based on spike rates and response latencies of population spike data. Submitted on March 2010

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Cerquera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerquera, A., Freund, J. Fast estimation of motion from selected populations of retinal ganglion cells. Biol Cybern 104, 53–64 (2011). https://doi.org/10.1007/s00422-011-0418-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-011-0418-x

Keywords

Navigation