Skip to main content
Log in

Optic flow estimation on trajectories generated by bio-inspired closed-loop flight

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

We generated panoramic imagery by simulating a fly-like robot carrying an imaging sensor, moving in free flight through a virtual arena bounded by walls, and containing obstructions. Flight was conducted under closed-loop control by a bio-inspired algorithm for visual guidance with feedback signals corresponding to the true optic flow that would be induced on an imager (computed by known kinematics and position of the robot relative to the environment). The robot had dynamics representative of a housefly-sized organism, although simplified to two-degree-of-freedom flight to generate uniaxial (azimuthal) optic flow on the retina in the plane of travel. Surfaces in the environment contained images of natural and man-made scenes that were captured by the moving sensor. Two bio-inspired motion detection algorithms and two computational optic flow estimation algorithms were applied to sequences of image data, and their performance as optic flow estimators was evaluated by estimating the mutual information between outputs and true optic flow in an equatorial section of the visual field. Mutual information for individual estimators at particular locations within the visual field was surprisingly low (less than 1 bit in all cases) and considerably poorer for the bio-inspired algorithms that the man-made computational algorithms. However, mutual information between weighted sums of these signals and comparable sums of the true optic flow showed significant increases for the bio-inspired algorithms, whereas such improvement did not occur for the computational algorithms. Such summation is representative of the spatial integration performed by wide-field motion-sensitive neurons in the third optic ganglia of flies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adelson EH, Bergen JR (1985) Spatiotemporal energy models for the perception of motion. J Opt Soc Am A 2: 284–299

    Article  PubMed  CAS  Google Scholar 

  • Barnett PD, Nordström K, O’Carroll D (2010) Motion adaptation and the velocity coding of natural scenes. Curr Biol 20: 994–999

    Article  PubMed  CAS  Google Scholar 

  • Borst A, Haag J (2002) Neural networks in the cockpit of the fly. J Comp Physiol A 188: 419–437

    Article  CAS  Google Scholar 

  • Borst A, Egelhaaf M, Haag J (1995) Mechanisms of dendritic integration underlying gain control in fly motion-sensitive neurons. J Comput Neurosci 2: 5–18

    Article  PubMed  CAS  Google Scholar 

  • Borst A, Haag J, Reiff D (2010) Fly motion vision. Annu Rev Neurosci 33: 49–70

    Article  PubMed  CAS  Google Scholar 

  • Bouguet J-Y (1999) Pyramidal implementation of the Lucas– Kanade feature tracker. OpenCV documentation. Microprocessor Research Lab, Intel Corporation, Santa Clara, CA

    Google Scholar 

  • Clifford CWG, Ibbotson MR (2003) Fundamental mechanisms of visual motion detection: models, cells and functions. Prog Neurobiol 68: 409–437

    Article  Google Scholar 

  • Clifford CWG, Langley K (1996) A model of temporal adaptation in fly motion vision. Vis Res 36: 2595–2608

    Article  PubMed  CAS  Google Scholar 

  • Collett TS, Land MF (1975) Visual control of flight behaviour in the hoverfly, Syritta pipiens L. J Comp Physiol A 99: 1–66

    Article  Google Scholar 

  • Dahmen HJ, Franz MO, Krapp HG (2001) Extracting egomotion from optic flow: limits of accuracy and neural matched filters. In: Zanker J, Zeil J (eds) Motion vision—computational, neural and ecological constraints. Springer, Berlin, pp 143–168

    Google Scholar 

  • Dickson WB, Straw AD, Dickinson MH (2008) Integrative model of Drosophila flight. AIAA J 46: 2150–2164

    Article  Google Scholar 

  • Dror RO, O’Carroll DC, Laughlin SB (2001) Accuracy of velocity estimation by Reichardt correlators. J Opt Soc Am A 18: 241–252

    Article  CAS  Google Scholar 

  • Egelhaaf M, Borst A (1993) Movement detection in arthropods. In: Miles FA, Wallman J (eds) Visual motion in the stabilization of gaze. Elsevier, Amsterdam, pp 3–27

    Google Scholar 

  • Egelhaaf M, Borst A, Reichardt W (1989) Computational structure of a biological motion-detection system as revealed by local detector analysis in the fly’s nervous system. J Opt Soc Am A 6: 1070–1087

    Article  PubMed  CAS  Google Scholar 

  • Egelhaaf M, Kern R, Krapp HG, Kretzberg J, Kurtz R, Warzecha A (2002) Neural encoding of behaviourally relevant visual-motion information in the fly. Trends Neurosci 25: 96–102

    Article  PubMed  CAS  Google Scholar 

  • Franceschini N, Riehle A, Le Nestour A (1989) Directionally selective motion detection by insect neurons. In: Stavenga DG, Hardie RC (eds) Facets of vision. Springer-Verlag, Berlin, pp 360–390

    Google Scholar 

  • Franz MO, Krapp HG (2000) Wide-field, motion sensitive neurons and matched filters for optic flow fields. Biol Cybern 83: 185–197

    Article  PubMed  CAS  Google Scholar 

  • Fry SN, Sayaman R, Dickinson MH (2003) The aerodynamics of free flight maneuvers in Drosophila. Science 300: 495–498

    Article  PubMed  CAS  Google Scholar 

  • Grosse I (1996) Estimating entropies from finite samples. In: Freund JA (eds) Dynamik—evolution—strukturen. Verlag Dr. Köster, Berlin

    Google Scholar 

  • Haag J, Denk W, Borst A (2004) Fly motion vision is based on Reichardt detectors regardless of the signal-to-noise ratio. Proc Natl Acad Sci USA 101: 16333–16338

    Article  PubMed  CAS  Google Scholar 

  • Harris RA, O’Carroll DC, Laughlin SB (1999) Adaptation and the temporal filter of fly motion detectors. Vis Res 39: 2603–2613

    Article  PubMed  CAS  Google Scholar 

  • Harris RA, O’Carroll DC, Laughlin SB (2000) Contrast gain reduction in fly motion adaptation. Neuron 28: 595–606

    Article  PubMed  CAS  Google Scholar 

  • Hassenstein B, Reichardt W (1956) Systemtheoretische analyse der Zeit-, Reihenfolgen-, und Vorseichenauswertung bei der Berwegungsperzeption des Rüsselkäfers Chlorophanus. Z Naturforsch 11: 513–524

    Google Scholar 

  • Hausen K (1982) Motion sensitive interneurons in the optomotor system of the fly. I. The horizontal cells: structure and signals. Biol Cybern 45: 143–156

    Article  Google Scholar 

  • Hausen K (1982) Motion-sensitive interneurons in the optomotor system of the fly. II. The horizontal cells: receptive field organization and response characteristics. Biol Cybern 46: 67–79

    Article  Google Scholar 

  • Hausen K, Egelhaaf M (1989) Neural mechanisms of visual course control in insects. In: Stavenga DG, Hardie RC (eds) Facets of vision. Springer-Verlag, Berlin, pp 391–424

    Google Scholar 

  • Herzel H, Grosse I (1995) Measuring correlations in symbols sequences. Physica A 216: 518–542

    Article  CAS  Google Scholar 

  • Hesselberg T, Lehmann FO (2007) Turning behavior depends on frictional damping in the fruit fly Drosophila. J Exp Biol 210: 4319–4334

    Article  PubMed  Google Scholar 

  • Humbert JS, Hyslop AM (2010) Bio-inspired visuomotor convergence. IEEE Trans Robot 26: 121–130

    Article  Google Scholar 

  • Hyslop AM, Krapp HG, Humbert JS (2010) Control theoretic interpretation of directional motion preferences in optic flow processing interneurons. Biol Cybern 95(5): 413–430

    Google Scholar 

  • Kirschfeld K (1991) An optomotor control system with automatic compensation for contrast and texture. Proc R Soc Lond B0 246: 261–268

    Article  CAS  Google Scholar 

  • Koenderink JJ, van Doorn AJ (1987) Facts on optic flow. Biol Cybern 56: 247–254

    Article  PubMed  CAS  Google Scholar 

  • Krapp HG, Hengstenberg B, Hengstenberg R (1998) Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly. J Neurophysiol 79: 1902–1917

    PubMed  CAS  Google Scholar 

  • Laughlin SB (1976) Neural integration in the first optic neuropile in dragonflies. IV. Interneuron spectral sensitivity and contrast enconding. J Comp Physiol 112: 199–211

    Article  Google Scholar 

  • Laughlin S (1984) The roles of parallel channels in early visual processing by the arthropod compound eye. In: Ali MA (eds) Photoreception and vision in invertebrates. Plenum Press, New York, pp 457–481

    Google Scholar 

  • Lipetz LE (1971) The relation of physiological and psychological aspects of sensory intensity. In: Loewenstein WR (eds) Handbook of sensory physiology. Springer, Berlin, Heidelberg, New York, pp 192–225

    Google Scholar 

  • Lucas BD, Kanade T (1981) An iterative image registration technique with an application to stereo vision. In: Proceedings of the 7th international joint conference on artificial intelligence, Canada, pp 674–679

  • Maddess T, Laughlin SB (1985) Adaptation of the motion sensitive neuron H1 is generated locally and governed by contrast frequency. Proc R Soc Lond B 225: 251–275

    Article  Google Scholar 

  • McCarthy C, Barnes N (2004) Performance of optical flow techniques for indoor navigation with a mobile robot. In: Proceedings of IEEE international conference on robots & automation, New Orleans, LA, pp 5093–5098

  • Naka KI, Rushton WAH (1966) S-potentials from luminosity units in retina of fish (Cyprinidae). J Physiol (Lond) 185: 587–599

    CAS  Google Scholar 

  • Reiser MB, Humbert JS, Dunlop MJ, del Vecchio D, Murray RM, Dickinson MH (2004) Vision as a compensatory mechanism for disturbance rejection in upwind flight. Proc Am Control Conf 1: 311–316

    Google Scholar 

  • Rind FC (1996) Intracellular characterization of neurons in the locust brain signaling impending collision. J Neurophysiol 75: 986–995

    PubMed  CAS  Google Scholar 

  • Shoemaker PA, O’Carroll DC, Straw AD (2005) Velocity constancy and models for wide-field motion detection in insects. Biol Cybern 93: 275–287

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan MV, Guy RG (1990) Spectral properties of movement perception in the dronefly Eristalis. J Comp Physiol A 166: 287–295

    Article  Google Scholar 

  • Srinivasan M, Zhang SW (2004) Visual motor computations in insects. Annu Rev Neurosci 27: 679–696

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan MV, Zhang SW, Chandrashekara K (1993) Evidence for two distinct movement-detecting mechanisms in insect vision. Naturwissenschaften 80: 38–41

    Article  Google Scholar 

  • Srinivasan MV, Zhang SW, Lehrer M, Collet TS (1996) Honeybee navigation en route to the goal: visual flight control and odometry. J Exp Biol 199: 237–244

    PubMed  Google Scholar 

  • Straw AD, Rainsford T, O’Carroll D (2008) Contrast sensitivity of insect motion detection to natural images. J Vis 8: 1–9

    Article  PubMed  Google Scholar 

  • Tolhurst DJ, Tadmor Y, Chao T (1992) Amplitude spectra of natural images. Ophthalmol Physiol Opt 12: 229–232

    Article  CAS  Google Scholar 

  • van Santen JPH, Sperling G (1984) Temporal covariance model of human motion perception. J Opt Soc Am 1: 451–473

    Article  Google Scholar 

  • Wolf-Oberhollenzer F, Kirschfeld K (1994) Motion sensitivity in the nucleus of the basal optic root of the pigeon. J Neurophysiol 71: 1559–1573

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick A. Shoemaker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shoemaker, P.A., Hyslop, A.M. & Humbert, J.S. Optic flow estimation on trajectories generated by bio-inspired closed-loop flight. Biol Cybern 104, 339–350 (2011). https://doi.org/10.1007/s00422-011-0436-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-011-0436-8

Keywords

Navigation