Skip to main content
Log in

Prospective guidance in a free-swimming cell

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

A systems theory of movement control in animals is presented in this article and applied to explaining the controlled behaviour of the single-celled Paramecium caudatum in an electric field. The theory—General Tau Theory—is founded on three basic principles: (i) all purposive movement entails prospectively controlling the closure of action-gaps (e.g. a distance gap when reaching, or an angle gap when steering); (ii) the sole informational variable required for controlling gaps is the relative rate of change of the gap (the time derivative of the gap size divided by the size), which can be directly sensed; and (iii) a coordinated movement is achieved by keeping the relative rates of change of gaps in a constant ratio. The theory is supported by studies of controlled movement in mammals, birds and insects. We now show for the first time that it is also supported by single-celled paramecia steering to the cathode in a bi-polar electric field. General Tau Theory is deployed to explain this guided steering by the cell. This article presents the first computational model of prospective perceptual control in a non-neural, single-celled system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bernstein NA (1967) The co-ordination and regulation of movements. Pergamon Press, Oxford

    Google Scholar 

  • Bootsma RJ, Oudejans RR (1993) Visual information about time-to-collision between two objects. J Exp Psychol Hum Percept Perform 19: 1041–1052

    Article  CAS  PubMed  Google Scholar 

  • Cooper MS, Schliwa M (1985) Electrical and ionic controls of tissue cell locomotion in DC electric-fields. J Neurosci Res 13: 223–244

    Article  CAS  PubMed  Google Scholar 

  • Craig CM, Lee DN (1999) Neonatal control of nutritive sucking pressure: Evidence for an intrinsic tau-guide. Exp Brain Res 124: 371–382

    Article  CAS  PubMed  Google Scholar 

  • Craig CM, Delay D, Grealy MA, Lee DN (2000) Guiding the swing in golf putting. Nature 405: 295–296

    Article  CAS  PubMed  Google Scholar 

  • Craig CM, Pepping G-J, Grealy M (2005) Intercepting beats in predesignated target zones. Exp Brain Res 165: 490–504

    Article  PubMed  Google Scholar 

  • Delafield-Butt JT (2007) Towards a process ontology of organism: explaining behaviour in a cell. In: Kelly T, Dibben M (eds) Applied process thought: frontiers of theory and research. Ontos Verlag, Paris

    Google Scholar 

  • Delafield-Butt JT, Galler A, Schögler B, Lee DN (2010) A perception-action strategy for hummingbirds. Perception 39: 1172–1174

    Article  PubMed  Google Scholar 

  • Duffin WJ (1990) Electricity and magnetism. McGraw-Hill, Maidenhead

    Google Scholar 

  • Field DT, Wann JP (2005) Perceiving time to collision activates the sensorimotor cortex. Curr Biol 15: 453–458

    Article  CAS  PubMed  Google Scholar 

  • Gibson JJ (1966) The senses considered as perceptual systems. Houghton Mifflin, Boston

    Google Scholar 

  • Gibson JJ (1977) The theory of affordances. In: Shaw R, Bransford J (eds) Perceiving, acting, and knowing. Erlbaum, Hillsdale

  • Gibson JJ (1979) The ecological approach to visual perception. Lawrence Erlbaum Associates, Hillsdale

  • Jahn TL (1961) Mechanism of ciliary movement. 1. Ciliary reversal and activation by electric current—Ludloff phenomenon in terms of core and volume conductors. J Protozool 8: 369–380

    Google Scholar 

  • Jennings HS (1923) Behavior of the lower organisms. Columbia University Press, New York

    Google Scholar 

  • Kaiser MK, Mawafy L (1993) Optical specification of time-to-passage: observers’ sensitivity to global tau. J Exp Psychol Hum Percept Perform 19: 1028–1040

    Article  CAS  PubMed  Google Scholar 

  • Kamada T (1929) Control of galvanotropism in paramecium. J Fac Sci Imp Univ Tokyo IV 2: 123–139

    Google Scholar 

  • Kamada T (1931a) Polar effect of electric current on the ciliary movements of paramecium. J Fac Sci Imp Univ Tokyo IV 2: 285–298

    Google Scholar 

  • Kamada T (1931b) Reversal of electric polar effect in paramecium according to the change of current strength. J Fac Sci Imp Univ Tokyo IV 2: 299–307

    Google Scholar 

  • Kinosita H (1939) Electrical stimulation of paramecium with linearly increasing current. J Cell Comp Physiol 13: 253–261

    Article  CAS  Google Scholar 

  • Lee DN (1976) Theory of visual control of braking based on information about time-to-collision. Perception 5: 437–459

    Article  CAS  PubMed  Google Scholar 

  • Lee DN (1998) Guiding movement by couopling tause. Ecol Psychol 10: 221–250

    Google Scholar 

  • Lee DN (2005) Tau in action in development. In: Rieser JJ, Lockman JJ, Nelson CA (eds) Action as an organiser of learning. Erlbaum, Mahwah

  • Lee DN (2009) General tau theory: evolution to date. Perception 38: 837–858

    Article  PubMed  Google Scholar 

  • Lee DN, Reddish PE (1981) Plummeting gannets: a paradigm of ecological optics. Nature 293: 293–294

    Article  Google Scholar 

  • Lee DN, Young DS, Reddish PE, Lough S, Clayton TMH (1983) Visual timing in hitting and accelerating ball. Q J Exp Psychol A 35: 333–346

    Article  CAS  PubMed  Google Scholar 

  • Lee DN, Reddish PE, Rand DT (1991) Aerial docking by hummingbirds. Naturwissenschaften 78: 526–527

    Article  Google Scholar 

  • Lee DN, Vanderweel FRR, Hitchcock T, Matejowsky E, Pettigrew JD (1992a) Common principles of guidance by echolocation and vision. J Comp Physiol A 171: 563–571

    Article  CAS  PubMed  Google Scholar 

  • Lee DN, Young DS, Rewt D (1992b) How do somersaulters land on their feet. J Exp Psychol Hum Percept Perform 18: 1195–1202

    Article  CAS  PubMed  Google Scholar 

  • Lee DN, Davies MNO, Green PR, Vanderweel FRR (1993) Visual control of velocity of approach by pigeons when landing. J Exp Biol 180: 85–104

    Google Scholar 

  • Lee DN, Simmons JA, Saillant PA, Bouffard F (1995) Steering by echolocation: a paradigm of ecological acoustics. J Comp Physiol A 176: 347–354

    CAS  PubMed  Google Scholar 

  • Lee DN, Craig CM, Grealy MA (1999) Sensory and intrinsic coordination of movement. Proc R Soc Lond B 266: 2029–2035

    Article  CAS  Google Scholar 

  • Lee DN, Georgopoulos AP, Clark MJO, Craig CM, Port NL (2001) Guiding contact by coupling the taus of gaps. Exp Brain Res 139: 151–159

    Article  CAS  PubMed  Google Scholar 

  • Leon MI, Shadlen MN (2003) Representation of time by neurons in the posterior parietal cortex of the macaque. Neuron 38: 317–327

    Article  CAS  PubMed  Google Scholar 

  • Li ZG, Milgram P (2008) An empirical investigation of a dynamic brake light concept for reduction of rear-end collisions through manipulation of optical looming. Int J Hum–comput Stud 66: 158–172

    Article  Google Scholar 

  • Ludloff K (1895) Untersuchungen uber den galvanotrpisum. Arch Ges Physiol 59: 525–554

    Article  Google Scholar 

  • Merchant H, Georgopoulos AP (2006) Neurophysiology of perceptual and motor aspects of interception. J Neurophysiol 95: 1–13

    Article  PubMed  Google Scholar 

  • Merchant H, Battaglia-Mayer A, Georgopoulos AP (2004a) Neural responses during interception of real and apparent circularly moving stimuli in motor cortex and area 7a. Cereb Cortex 14: 314–331

    Article  PubMed  Google Scholar 

  • Merchant H, Battaglia-Mayer A, Georgopoulos AP (2004b) Neurophysiology of the parietal–frontal system during target interception. Neurol Clin Neurophysiol 1: 1–5

    Google Scholar 

  • Offen RJ, Roberts AM (1973) The relations between membrane potential and parameters of ciliary beat in free-swimming Paramecium caudatum. J Exp Biol 59: 583–593

    CAS  PubMed  Google Scholar 

  • Ogawa N, Oku H, Hashimoto K, Ishikawa M (2006) A physical model for galvanotaxis of paramecium cell. J Theor Biol 242: 314–328

    Article  PubMed  Google Scholar 

  • Regan D, Hamstra SJ (1993) Dissociation of discrimination thresholds for time to contact and for rate of angular expansion. Vis Res 33: 447–462

    Article  CAS  PubMed  Google Scholar 

  • Schogler B, Pepping G-J, Lee DN (2008) Taug-guidance of transients in expressive musical performance. Exp Brain Res 189: 361–372

    Article  PubMed  Google Scholar 

  • Sun H, Frost BJ (1998) Computation of different optical variables of looming objects in pigeon nucleus rotundus neurons. Nat Neurosci 1: 296–303

    Article  CAS  PubMed  Google Scholar 

  • Tan H-RM, Leuthold AC, Lee DN, Lynch JK, Georgopoulos AP (2009) Neural mechanisms of movement speed and tau as revealed by magnetoencephalography. Exp Brain Res 195: 541–542

    Article  Google Scholar 

  • Tresilian JR (1999) Visually timed action: time-out for ‘tau’. Trends Cogn Sci 3: 301–310

    Article  PubMed  Google Scholar 

  • Van Houten J (1978) Two mechanisms of chemotaxis in paramecium. J Comp Physiol A 127: 167–174

    Article  CAS  Google Scholar 

  • Van Houten J, Van Houten J (1982) Computer simulation of paramecium chemo kinesis behavior. J Theor Biol 98: 453–468

    Article  Google Scholar 

  • Verworn M (1889) Die polare erregung der protisten durch den galvanischen strom. Arch Ges Physiol 45: 1–36

    Article  Google Scholar 

  • Verworn M (1896) Untersuchungen uber die polare erregung der lebendigen substans durch den constanten strom. III. Mittheilung. Arch Ges Physiol 62: 415–450

    Article  Google Scholar 

  • Wagner H (1982) Flow-field variables trigger landing in flies. Nature 297: 147–148

    Article  Google Scholar 

  • Wang Y, Frost BJ (1992) Time to collision is signalled by neurons in the nucleus rotundus of pigeons. Nature 356: 236–238

    Article  CAS  PubMed  Google Scholar 

  • Wann JP (1996) Anticipating arrival: is the tau margin a specious theory?. J Exp Psychol Hum Percept Perform 22: 1031–1038

    Article  CAS  PubMed  Google Scholar 

  • Yilmaz EH, Warren WH (1995) Visual control of braking: a test of the tau hypothesis. J Exp Psychol Hum Percept Perform 21: 996–1014

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan T. Delafield-Butt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delafield-Butt, J.T., Pepping, GJ., McCaig, C.D. et al. Prospective guidance in a free-swimming cell. Biol Cybern 106, 283–293 (2012). https://doi.org/10.1007/s00422-012-0495-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-012-0495-5

Keywords

Navigation