Skip to main content
Log in

Tracking improves performance of biological collision avoidance models

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Collision avoidance models derived from the study of insect brains do not perform universally well in practical collision scenarios, although the insects themselves may perform well in similar situations. In this article, we present a detailed simulation analysis of two well-known collision avoidance models and illustrate their limitations. In doing so, we present a novel continuous-time implementation of a neuronally based collision avoidance model. We then show that visual tracking can improve performance of these models by allowing an relative computation of the distance between the obstacle and the observer. We compare the results of simulations of the two models with and without tracking to show how tracking improves the ability of the model to detect an imminent collision. We present an implementation of one of these models processing imagery from a camera to show how it performs in real-world scenarios. These results suggest that insects may track looming objects with their gaze.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aloimonos Y, Weiss I, Bandopadhay A (1988) Active vision. Int J Comput Vis 2: 333–356

    Article  Google Scholar 

  • Bajcsy R (1985) Active perception vs. passive perception. In: Proceedings of IEEE workshop on computer vision, pp 55–59

  • Bandopadhay A, Ballard DH (1991) Egomotion perception using visual tracking. Comput Intell 7: 39–47

    Article  Google Scholar 

  • Boeddeker N, Hemmi JM (2010) Visual gaze control during peering flight manoeuvres in honeybees. Proc R Soc B 277: 1209–1217

    Article  PubMed  Google Scholar 

  • Boeddeker N, Dittmar L, Stürzl W, Egelhaaf M (2010) The fine structure of honeybee head and body yaw movements in a homing task. Proc R Soc Lond B 277(1689): 1899–1906

    Article  Google Scholar 

  • Borst A (1990) How do flies land. Bioscience 40(2): 292–299

    Article  Google Scholar 

  • Borst A, Bahde S (1986) What kind of movement detector is triggering the landing response of the housefly. Biol. Cybern. 55: 59–69

    Article  Google Scholar 

  • Bruckstein A, Holt RJ, Katsman I, Rivlin E (2005) Head movements for depth perception: Praying mantis versus pigeon. Auton Robots 18: 21–42

    Article  Google Scholar 

  • Daniilidis K (1997) Fixation simplifies 3D motion estimation. Comp Vis Image Underst 68(2): 158–169

    Article  Google Scholar 

  • Duric Z, Rosenfeld A, Duncan J (1999) The applicability of Green’s theorem to computation of rate of approach. Int J Comput Vis 31(1): 83–98

    Article  Google Scholar 

  • Eckert MP, Buchsbaum G (1993) Effect of tracking strategies on the velocity structure of two dimensional image sequences. J Opt Soc Am A 10(7): 1582–1585

    Article  Google Scholar 

  • Fermuller C, Aloimonos Y (1992) Tracking facilitates 3-d motion estimation. Biol. Cybern. 67: 259–268

    Article  Google Scholar 

  • Foley JD, Hughes J, van Dam A, Feiner S (1995) Computer graphics: principles and practice. Addison-Wesley, Boston

    Google Scholar 

  • Franz MO, Krapp HG (2000) Wide-field, motion-sensitive neurons and matched filters for optic flow fields. Biol Cybern 83: 185–197

    Article  PubMed  CAS  Google Scholar 

  • Gibson JJ (1950) The perception of the visual world. Houghton Mifflin Co., Boston

  • Harrison RR (2005) A biologically inspired analog IC for visual collision detection. IEEE Trans Circuits Syst-I 52: 2308–2318

    Article  Google Scholar 

  • Hassenstein B, Reichardt W (1956) Systemtheorische analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus. Z Naturforschung 11(b): 513–524

    Google Scholar 

  • Hatsopoulos N, Gabbiani F, Laurent G (1995) Elementary computation of object approach by a wide-field visual neuron. Science 270: 1000–1003

    Article  PubMed  CAS  Google Scholar 

  • Hemmi JM, Tomsic D (2011) The neuroethology of escape in crabs: from sensory ecology to neurons and back. Curr Opin Neurobiol 22: 1–7

    Google Scholar 

  • Higgins CM, Pant V (2004) An elaborated model of fly small target tracking. Biol Cybern 91(6): 417–428

    Article  PubMed  Google Scholar 

  • Horn B (1986) Robot Vision chapter 12. MIT Press, Cambridge, MA

  • Horn BKP, Schunck BG (1981) Determining optical flow. Artif Intell 17:185–203

    Article  Google Scholar 

  • Hyslop AM, Humbert JS (2010) Autonomous navigation in three-dimensional urban environments using wide-field integration of optic flow. J Guidance Control Dyn 33(1): 147–159

    Article  Google Scholar 

  • Koch C, Marroquin J, Yuille A (1986) Analog “neuronal” networks in early vision. Proc Natl Acad Sci USA 83: 4263–4267

    Article  PubMed  CAS  Google Scholar 

  • Koenderink JJ, van Doorn AJ (1987) Facts on optic flow. Biol. Cybern. 56(4): 247–254

    Article  PubMed  CAS  Google Scholar 

  • Krapp HG, Hengstenberg B, Hengstenberg R (1998) Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly. J Neurophysiol 79: 1902–1917

    PubMed  CAS  Google Scholar 

  • Land MF (1973) Head movements of flies during visually guided flight. Nature 243: 299–300

    Article  Google Scholar 

  • Laurent G, Gabbiani F (1998) Collision-avoidance: Nature’s many solutions. Nat Neurosci 1(4): 261–263

    Article  PubMed  CAS  Google Scholar 

  • Lindemann JP, Kern R, Hateren JH, Ritter H, Egelhaaf M (2005) On the computations analyzing natural optic flow: Quantitative model analysis of the blowfly motion vision pathway. J Neurosci 25(27):6435–6448

    Article  PubMed  CAS  Google Scholar 

  • Milde JJ, Strausfeld NJ (1990) Cluster organization and response characteristics of the giant fiberpathway of the blowfly Calliphora erythrocephala. J Comp Neurol 294: 59–75

    Article  PubMed  CAS  Google Scholar 

  • Pant V (2007) Biomimetic visual navigation architectures for autonomous intelligent systems. PhD dissertation, University of Arizona, Tucson

  • Reichardt W (1961) Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. In: Rosenblith WA (ed) Sensory communication. MIT Press, New York, pp 303–317

  • Reichardt W, Egelhaaf M, Schlögl RW (1988) Movement detectors provide sufficient information for local computation of 2-D velocity field. Naturwiss 75: 313–315

    Article  PubMed  CAS  Google Scholar 

  • Reiser M, Dickinson M (2003) A test bed for insect-inspired robotic control. Philos Trans R Soc Lond A 361: 2267–2285

    Article  Google Scholar 

  • Rind FC (1984) A chemical synapse between two motion detecting neurones in the locust brain. J Exp Biol 110(1): 143–167

    PubMed  CAS  Google Scholar 

  • Rind FC, Bramwell DI (1996) Neural network based on the input organization of an identified neuron signaling impending collision. J Neurophysiol 75: 967–985

    PubMed  CAS  Google Scholar 

  • Rind FC, Simmons PJ (1992) Orthopteran DCMD neuron: a reevaluation of response to moving objects. I. Selective responses to approaching objects. J Neurophysiol 68: 1654–1666

    PubMed  CAS  Google Scholar 

  • Schilstra C, van Hateren JH (1998) Stabilizing gaze in flying blowflies. Nature 395: 654

    Article  PubMed  CAS  Google Scholar 

  • Simmons PJ, Rind FC (1992) Orthopteran DCMD neuron: a reevaluation of response to moving objects. II. Critical cues for detecting approaching objects. J Neurophysiol 68:1667–1682

    PubMed  CAS  Google Scholar 

  • Stocker A (2004) Analog VLSI focal-plane array with dynamic connections for the estimation of piecewise-smooth optical flow. IEEE Trans Circuit Syst 51(5): 963–973

    Article  Google Scholar 

  • Sun H, Frost BJ (1998) Computation of different optic variables of looming objects in pigeon nucleus rotundus neurons. Nat Neurosci 1: 296–303

    Article  PubMed  CAS  Google Scholar 

  • Tammero LF, Dickinson MH (2002) Collision-avoidance and landing responses are mediated by separate pathways in the fruit fly, Drosophila melanogaster. J Exp Biol 205: 2785–2798

    PubMed  Google Scholar 

  • van Hateren JH, Schilstra C (1999) Blowfly flight and optic flow. II. Head movements during flight. J Exp Biol 202: 1491–1500

    PubMed  Google Scholar 

  • van Hateren JH, Kern R, Schwerdtfeger G, Egelhaaf M (2005) Function and coding in the blowfly H1 neuron during naturalistic optic flow. J Neurosci 25(17): 4343–4352

    Article  PubMed  Google Scholar 

  • Verri A, Poggio T (1989) Motion field and optical-flow—qualitative properties. IEEE Trans Pattern Anal Mach. Intell 11: 490–498

    Article  Google Scholar 

  • Warren WH, Hannon DJ (1990) Eye movements and optical flow. J Opt Soc Am A 7(1): 160–169

    Article  PubMed  Google Scholar 

  • Wertz A, Gaub B, Plett J, Haag J, Borst A (2009) Robust coding of ego-motion in descending neurons of the fly. J Neurosci 29(47): 14993–15000

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles M. Higgins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pant, V., Higgins, C.M. Tracking improves performance of biological collision avoidance models. Biol Cybern 106, 307–322 (2012). https://doi.org/10.1007/s00422-012-0499-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-012-0499-1

Keywords

Navigation