Skip to main content

Advertisement

Log in

A reductionist approach to the analysis of learning in brain–computer interfaces

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The complexity and scale of brain–computer interface (BCI) studies limit our ability to investigate how humans learn to use BCI systems. It also limits our capacity to develop adaptive algorithms needed to assist users with their control. Adaptive algorithm development is forced offline and typically uses static data sets. But this is a poor substitute for the online, dynamic environment where algorithms are ultimately deployed and interact with an adapting user. This work evaluates a paradigm that simulates the control problem faced by human subjects when controlling a BCI, but which avoids the many complications associated with full-scale BCI studies. Biological learners can be studied in a reductionist way as they solve BCI-like control problems, and machine learning algorithms can be developed and tested in closed loop with the subjects before being translated to full BCIs. The method is to map 19 joint angles of the hand (representing neural signals) to the position of a 2D cursor which must be piloted to displayed targets (a typical BCI task). An investigation is presented on how closely the joint angle method emulates BCI systems; a novel learning algorithm is evaluated, and a performance difference between genders is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Barrett E, Lally V (1999) Gender differences in an on-line learning environment. J Comput Assist Learn 15(1):48–60. doi:10.1046/j.1365-2729.1999.151075.x

    Article  Google Scholar 

  • Blankertz B, Dornhege G, Krauledat M, Muller KR, Curio G (2007) The non-invasive Berlin brain–computer interface: fast acquisition of effective performance in untrained subjects. NeuroImage 37(2):539–550. doi:10.1016/j.neuroimage.2007.01.051

    Article  PubMed  Google Scholar 

  • Blankertz B, Dornhege G, Lemm S, Krauledat M, Curio G, Muller GR (2006) The Berlin brain-computer interface: machine learning based detection of user specific brain states. J Univers Comput Sci 12(6):581–607

    Google Scholar 

  • Brockwell AE, Rojas AL, Kass RE (2004) Recursive bayesian decoding of motor cortical signals by particle filtering. J Neurophysiol 91(4):1899–1907. doi:10.1152/jn.00438.2003

    Article  PubMed  CAS  Google Scholar 

  • Carmena JM, Lebedev MA, Crist RE, O’Doherty JE, Santucci DM, Dimitrov DF, Patil PG, Henriquez CS, Nicolelis MA (2003) Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biol 1(2):E42. doi:10.1371/journal.pbio.0000042

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Casadio M, Pressman A, Fishbach A, Danziger Z, Acosta S, Chen D, Tseng HY, Mussa-Ivaldi FA (2010) Functional reorganization of upper-body movement after spinal cord injury. Exp Brain Res 207(3–4):233–247. doi:10.1007/s00221-010-2427-8

    Article  PubMed Central  PubMed  Google Scholar 

  • Chase SM, Schwartz AB, Kass RE (2009) Bias, optimal linear estimation, and the differences between open-loop simulation and closed-loop performance of spiking-based brain-computer interface algorithms. Neural Netw 22(9):1203–1213. doi:10.1016/j.neunet.2009.05.005

    Article  PubMed Central  PubMed  Google Scholar 

  • Cunningham JP, Nuyujukian P, Giljia V, Chestek CA, Ryu SI, Shenoy K (2010) A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. J Neurophysiol 105:1938–1949

    Google Scholar 

  • Danziger Z, Fishbach A, Mussa-Ivaldi FA (2009) Learning algorithms for human-machine interfaces. IEEE Trans Biomed Eng 56(5):1502–1511. doi:10.1109/TBME.2009.2013822

    Article  PubMed Central  PubMed  Google Scholar 

  • Danziger Z, Mussa-Ivaldi FA (2012) The influence of visual motion on motor learning. J Neurosci 32(29):9859–9869. doi:10.1523/Jneurosci.5528-11

    Google Scholar 

  • Farwell LA, Donchin E (1988) Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 70(6):510–523

    Article  PubMed  CAS  Google Scholar 

  • Fels SS, Hinton GE (1998) Glove-TalkII-a neural-network interface which maps gestures to parallel formant speech synthesizer controls. IEEE Trans Neural Netw 9(1):205–212

    Article  PubMed  CAS  Google Scholar 

  • Flanagan JR, Rao AK (1995) Trajectory adaptation to a nonlinear visuomotor transformation: evidence of motion planning in visually perceived space. J Neurophysiol 74(5):2174–2178

    PubMed  CAS  Google Scholar 

  • Ganguly K, Carmena JM (2009) Emergence of a stable cortical map for neuroprosthetic control. PLoS Biol 7(7):e1000153. doi:10.1371/journal.pbio.1000153

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Heliot R, Ganguly K, Jimenez J, Carmena JM (2010) Learning in closed-loop brain-machine interfaces: modeling and experimental validation. IEEE Trans Syst Man Cybern Part B Cybern 40(5):1387–1397. doi:10.1109/Tsmcb.2036931

    Article  Google Scholar 

  • Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen D, Penn RD, Donoghue JP (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442(7099):164–171. doi:10.1038/nature04970

    Article  PubMed  CAS  Google Scholar 

  • Ingram JN, Kording KP, Howard IS, Wolpert DM (2008) The statistics of natural hand movements. Exp Brain Res 188(2):223–236. doi:10.1007/s00221-008-1355-3

    Article  PubMed Central  PubMed  Google Scholar 

  • Jarosiewicz B, Chase SM, Fraser GW, Velliste M, Kass RE, Schwartz AB (2008) Functional network reorganization during learning in a brain-computer interface paradigm. Proc Natl Acad Sci USA 105(49):19486–19491. doi:10.1073/pnas.0808113105

    Article  PubMed Central  PubMed  Google Scholar 

  • Kessler GD, Hodges LF, Walker N (1995) Evaluation of the CyberGlove as a whole hand input device. ACM Trans Comput Hum Interact 2(4):20

    Article  Google Scholar 

  • Kim HK, Biggs SJ, Schloerb DW, Carmena JM, Lebedev MA, Nicolelis MAL, Srinivasan MA (2006) Continuous shared control for stabilizing reaching and grasping with brain-machine interfaces. IEEE Trans Biomed Eng 53(6):1164–1173. doi:10.1109/Tbme.870235

    Article  PubMed  Google Scholar 

  • Kim SP, Simeral JD, Hochberg LR, Donoghue JP, Black MJ (2008) Neural control of computer cursor velocity by decoding motor cortical spiking activity in humans with tetraplegia. J Neural Eng 5(4):455–476. doi:10.1088/1741-2560/5/4/010

    Article  PubMed Central  PubMed  Google Scholar 

  • Kording KP, Wolpert DM (2004) Bayesian integration in sensorimotor learning. Nature 427(6971):244–247. doi:10.1038/nature02169

    Article  PubMed  CAS  Google Scholar 

  • Koyama S, Chase SM, Whitford AS, Velliste M, Schwartz AB, Kass RE (2010) Comparison of brain-computer interface decoding algorithms in open-loop and closed-loop control. J Comput Neurosci 29(1–2):73–87. doi:10.1007/s10827-009-0196-9

    Article  PubMed  Google Scholar 

  • Latash ML, Scholz JF, Danion F, Schoner G (2002) Finger coordination during discrete and oscillatory force production tasks. Exp Brain Res 146(4):419–432. doi:10.1007/s00221-002-1196-4

    Article  PubMed  Google Scholar 

  • Lebedev MA, Carmena JM, O’Doherty JE, Zacksenhouse M, Henriquez CS, Principe JC, Nicolelis MA (2005) Cortical ensemble adaptation to represent velocity of an artificial actuator controlled by a brain-machine interface. J Neurosci 25(19):4681–4693. doi:10.1523/JNEUROSCI.4088-04.2005

    Google Scholar 

  • Li Z, O’Doherty JE, Hanson TL, Lebedev MA, Henriquez CS, Nicolelis MAL (2009) Unscented Kalman filter for brain-machine interfaces. Plos One 4(7). doi:10.1371/Journal.Pone.0006243

  • Liu X, Mosier KM, Mussa-Ivaldi FA, Casadio M, Scheidt RA (2010) Reorganization of finger coordination patterns during adaptation to rotation and scaling of a newly learned sensorimotor transformation. J Neurophysiol. doi:10.1152/jn.00247.2010

  • Ludwig KA, Miriani RM, Langhals NB, Marzullo TC, Kipke DR (2011) Use of a Bayesian maximum-likelihood classifier to generate training data for brain-machine interfaces. J Neural Eng 8(4). doi:10.1088/1741-2560/8/4/046009

  • Marzke MW (1997) Precision grips, hand morphology, and tools. Am J Phys Anthropol 102(1):91–110. doi:10.1002/(SICI)1096-8644(199701)102:1\(<\)91::AID-AJPA8\(>\)3.0.CO;2-G

    Google Scholar 

  • Moritz CT, Fetz EE (2011) Volitional control of single cortical neurons in a brain-machine interface. J Neural Eng 8(2). doi:10.1088/1741-2560/8/2/025017

  • Mosier KM, Scheidt RA, Acosta S, Mussa-Ivaldi FA (2005) Remapping hand movements in a novel geometrical environment. J Neurophysiol 94(6):4362–4372. doi:10.1152/jn.00380.2005

    Article  PubMed  Google Scholar 

  • Muller H, Sternad D (2004) Accuracy and variability in goal oriented movements–decomposing gender differences in children. J Hum Kinet 12:19

    Google Scholar 

  • Muller KR, Tangermann M, Dornhege G, Krauledat M, Curio G, Blankertz B (2008) Machine learning for real-time single-trial EEG-analysis: from brain-computer interfacing to mental state monitoring. J Neurosci Methods 167(1):82–90. doi:10.1016/j.jneumeth.2007.09.022

    Article  PubMed  Google Scholar 

  • Mulliken GH, Musallam S, Andersen RA (2008) Decoding trajectories from posterior parietal cortex ensembles. J Neurosci 28(48):12913–12926. doi:10.1523/JNEUROSCI.1463-08.2008

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Musallam S, Corneil BD, Greger B, Scherberger H, Andersen RA (2004) Cognitive control signals for neural prosthetics. Science 305(5681):258–262. doi:10.1126/science.1097938

    Article  PubMed  CAS  Google Scholar 

  • Mussa-Ivaldi FA, Miller LE (2003) Brain-machine interfaces: computational demands and clinical needs meet basic neuroscience. Trends Neurosci 26(6):329–334

    Article  PubMed  CAS  Google Scholar 

  • Nicolelis MA, Lebedev MA (2009) Principles of neural ensemble physiology underlying the operation of brain-machine interfaces. Nat Rev Neurosci 10(7):530–540. doi:10.1038/nrn2653

    Article  PubMed  CAS  Google Scholar 

  • Paninski L, Fellows MR, Hatsopoulos NG, Donoghue JP (2004) Spatiotemporal tuning of motor cortical neurons for hand position and velocity. J Neurophysiol 91(1):515–532. doi:10.1152/jn.00587.2002

    Article  PubMed  Google Scholar 

  • Powers R, Shoham Y (2005) New criteria and a new algorithm for learning in multi-agent systems. In: Saul LK, Weiss Y, Bottou L (eds) Advances in neural information processing systems 17, pp 1089–1096. MIT Press, Cambridge

  • Salinas E, Abbott LF (1994) Vector reconstruction from firing rates. J Comput Neurosci 1(1–2):89–107

    Article  PubMed  CAS  Google Scholar 

  • Santello M, Flanders M, Soechting JF (1998) Postural hand synergies for tool use. J Neurosci 18(23):10105–10115

    PubMed  CAS  Google Scholar 

  • Santhanam G, Ryu SI, Yu BM, Afshar A, Shenoy KV (2006) A high-performance brain-computer interface. Nature 442(7099):195–198. doi:10.1038/nature04968

    Article  PubMed  CAS  Google Scholar 

  • Scholz JP, Schoner G (1999) The uncontrolled manifold concept: identifying control variables for a functional task. Exp Brain Res 126(3):289–306

    Article  PubMed  CAS  Google Scholar 

  • Serruya MD, Hatsopoulos NG, Paninski L, Fellows MR, Donoghue JP (2002) Instant neural control of a movement signal. Nature 416(6877):141–142. doi:10.1038/416141a

    Article  PubMed  CAS  Google Scholar 

  • Severiens SE, Ten Dam GTN (1994) Gender differences in learning styles: a narrative review and quantitative meta-analysis. High Educ 27(4):14

    Article  Google Scholar 

  • Shenoy KV, Meeker D, Cao S, Kureshi SA, Pesaran B, Buneo CA, Batista AP, Mitra PP, Burdick JW, Andersen RA (2003) Neural prosthetic control signals from plan activity. Neuroreport 14(4):591–596. doi:10.1097/01.wnr.0000063250.41814.39

    Article  PubMed  Google Scholar 

  • Shenoy P, Krauledat M, Blankertz B, Rao RP, Muller KR (2006) Towards adaptive classification for BCI. J Neural Eng 3(1):R13–23. doi:10.1088/1741-2560/3/1/R02

    Article  PubMed  Google Scholar 

  • Shoham Y, Leyton-Brown K (2009) Multiagent systems : algorithmic, game-theoretic, and logical foundations. Cambridge University Press, Cambridge

    Google Scholar 

  • Shoham Y, Powers R, Grenager T (2003) Multi-agent reinforcement learning: a critical survey. Technical report

  • Stevenson IH, Kording KP (2011) How advances in neural recording affect data analysis. Nat Neurosci 14(2):139–142

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Taylor DM, Tillery SI, Schwartz AB (2002) Direct cortical control of 3D neuroprosthetic devices. Science 296(5574):1829–1832. doi:10.1126/science.1070291

    Article  PubMed  CAS  Google Scholar 

  • Taylor DM, Tillery SIH, Schwartz AB (2003) Information conveyed through brain-control: cursor versus robot. IEEE Trans Neural Syst Rehab Eng 11(2):195–199. doi:10.1109/Tnsre.814451

    Google Scholar 

  • Tocheri MW, Orr CM, Jacofsky MC, Marzke MW (2008) The evolutionary history of the hominin hand since the last common ancestor of Pan and Homo. J Anat 212(4):544–562. doi:10.1111/j.1469-7580.2008.00865.x

    Article  PubMed Central  PubMed  Google Scholar 

  • Tresch MC, Jarc A (2009) The case for and against muscle synergies. Curr Opin Neurobiol 19(6):601–607. doi:10.1016/j.conb.2009.09.002

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • van Beers RJ, Sittig AC (1996) How humans combine simultaneous proprioceptive and visual position information. Exp Brain Res 111(2):253–261

    Article  PubMed  Google Scholar 

  • Velliste M, Perel S, Spalding MC, Whitford AS, Schwartz AB (2008) Cortical control of a prosthetic arm for self-feeding. Nature 453(7198):1098–1101. doi:10.1038/nature06996

    Article  PubMed  CAS  Google Scholar 

  • Voyer D, Voyer S, Bryden MP (1995) Magnitude of sex differences in spatial abilities: a meta-analysis and consideration of critical variables. Psychol Bull 117(2):250–270

    Article  PubMed  CAS  Google Scholar 

  • Wehrwein EA, Lujan HL, DiCarlo SE (2007) Gender differences in learning style preferences among undergraduate physiology students. Adv Physiol Educ 31(2):153–157. doi:10.1152/advan.00060.2006

    Article  PubMed  Google Scholar 

  • Weiss EJ, Flanders M (2004) Muscular and postural synergies of the human hand. J Neurophysiol 92(1):523–535. doi:10.1152/jn.01265.2003

    Article  PubMed  Google Scholar 

  • Weiss G, Sen S (1996) Adaptation and learning in multi-agent systems. Lecture notes in computer science 1042

  • Wessberg J, Nicolelis MA (2004) Optimizing a linear algorithm for real-time robotic control using chronic cortical ensemble recordings in monkeys. J Cogn Neurosci 16(6):1022–1035. doi:10.1162/0898929041502652

    Article  PubMed  Google Scholar 

  • Wessberg J, Stambaugh CR, Kralik JD, Beck PD, Laubach M, Chapin JK, Kim J, Biggs SJ, Srinivasan MA, Nicolelis MA (2000) Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature 408(6810):361–365. doi:10.1038/35042582

    Article  PubMed  CAS  Google Scholar 

  • Westwick DT, Pohlmeyer EA, Solla SA, Miller LE, Perreault EJ (2006) Identification of multiple-input systems with highly coupled inputs: application to EMG prediction from multiple intracortical electrodes. Neural Comput 18(2):329–355

    Article  PubMed Central  PubMed  Google Scholar 

  • Wolpaw JR (2007) Brain-computer interfaces as new brain output pathways. J Physiol 579(Pt 3):613–619. doi:10.1113/jphysiol.2006.125948

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain-computer interfaces for communication and control. Clin Neurophysiol 113(6):767–791

    Article  PubMed  Google Scholar 

  • Wolpaw JR, McFarland DJ (2004) Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proc Natl Acad Sci U S A 101(51):17849–17854. doi:10.1073/pnas.0403504101

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wu W, Hatsopoulos NG (2008) Real-time decoding of nonstationary neural activity in motor cortex. IEEE Trans Neural Syst Rehabil Eng 16(3):213–222. doi:10.1109/TNSRE.2008.922679

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part NINDS No. 1R01NS03581-01A2 and the Neilsen Foundation. Special thanks and acknowledgment to reviewers and Dr. Mussa-Ivaldi

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zachary Danziger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danziger, Z. A reductionist approach to the analysis of learning in brain–computer interfaces. Biol Cybern 108, 183–201 (2014). https://doi.org/10.1007/s00422-014-0589-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-014-0589-3

Keywords

Navigation