Skip to main content

Advertisement

Log in

Reconstruction of the input signal of the leaky integrate-and-fire neuronal model from its interspike intervals

  • Original Article
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Extracting the input signal of a neuron by analyzing its spike output is an important step toward understanding how external information is coded into discrete events of action potentials and how this information is exchanged between different neurons in the nervous system. Most of the existing methods analyze this decoding problem in a stochastic framework and use probabilistic metrics such as maximum-likelihood method to determine the parameters of the input signal assuming a leaky and integrate-and-fire (LIF) model. In this article, the input signal of the LIF model is considered as a combination of orthogonal basis functions. The coefficients of the basis functions are found by minimizing the norm of the observed spikes and those generated by the estimated signal. This approach gives rise to the deterministic reconstruction of the input signal and results in a simple matrix identity through which the coefficients of the basis functions and therefore the neuronal stimulus can be identified. The inherent noise of the neuron is considered as an additional factor in the membrane potential and is treated as the disturbance in the reconstruction algorithm. The performance of the proposed scheme is evaluated by numerical simulations, and it is shown that input signals with different characteristics can be well recovered by this algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The LIF model is a nonlinear model from the viewpoint of its input output relationship (superposition and scaling properties); however, because its differential equation is linear (versus many other spiking neuron models which have nonlinear differential equations), it is called a linear (dynamic) model by many neuroscientists (linearity of the state-variable dynamics) (Izhikevich 2003).

References

  • Agarwal R, Sarma SV (2012) Performance limitations of relay neurons. Comput Biol 8:1–19

    Google Scholar 

  • Bayly EJ (1968) Spectral analysis of pulse frequency modulation in the nervous systems. IEEE Trans Biomed Eng BME–15:257–265

    Article  Google Scholar 

  • Benedetto E, Sacerdote L (2013) On dependency properties of the ISIs generated by a two-compartment neuronal model. Biol Cybern 107(1):95–106

    Article  PubMed  Google Scholar 

  • Bibbona E, Lansky P, Sacerdote L, Sirovich R (2008) Errors in estimation of the input signal for integrate and fire neuronal models. Phys Rev E 78(01):0119181–01191810

    Article  Google Scholar 

  • Bibbona E, Lansky P, Sirovich R (2010) Estimating input parameters from intracellular recordings in the Feller neuronal model. Phys Rev E 81(3):0319161–03191613

    Article  Google Scholar 

  • Breen BJ, Gerken WC, Butera RJ (2003) Hybrid integrate-and-fire model of a bursting neuron. Neural Comput 15:2843–2862

    Article  PubMed  Google Scholar 

  • Bressloff PC (1995) Dynamics of a compartmental model integrate-and-fire neuron with somatic potential reset. Phys D Nonlinear Phenom 80(4):399–412

    Article  Google Scholar 

  • Brette R, Gerstner W (2005) Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J Neurophysiol 94:3637–3642

    Article  PubMed  Google Scholar 

  • Bruckstein AM, Morf M, Zeevi YY (1988) Demodulation methods for an adaptive neural encoder model. Biol Cybern 34:63–79

    Article  Google Scholar 

  • Brunel N, Nadal JP (1998) Mutual information, fisher information and population coding. Neural Comput 10(7):1731

    Article  CAS  PubMed  Google Scholar 

  • Buonocore A, Caputo L, Pirozzi E, Ricciardi LM (2010) On a stochastic leaky integrate-and-fire neuronal model. Neural Comput 22:2558–2585

    Article  CAS  PubMed  Google Scholar 

  • Burkitt AN (2006) A review of the integrate-and-fire neuron model: I. Homogenous synaptic input. Bioll Cybern 95:1–19

    Article  CAS  Google Scholar 

  • Cecchi GA, Sigman M, Alonso JM, Martínez L, Chialvo DR, Magnasco MO (2000) Noise in neurons is message dependent. PNAS 97(10):5557–5561

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ditlevsen S (2007) Parameters of stochastic diffusion processes estimated from observations of first-hitting times: application to the leaky integrate-and-fire neuronal model. Phys Rev E 76:041906

    Article  Google Scholar 

  • Dong Y, Mihalas S, Russell A, Etienne-Cummings R, Niebur E (2011) Estimating parameters of generalized integrate-and-fire neurons from the maximum likelihood of spike trains. Neural Comput 23:2833–2867

    Article  PubMed Central  PubMed  Google Scholar 

  • French AS, Holden AV (1971) Alias-free sampling of neuronal spike trains. Kybernetic 8:165–175

    Article  CAS  Google Scholar 

  • Gerstner W, Kistler WM (2002) Spiking neuron models. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Gerwinn S, Macke JH, Bethge M (2009) Bayesian population decoding of spiking neurons. Front Comput Neurosci 3:21. doi:10.3389/neuro.10.021

    Article  PubMed Central  PubMed  Google Scholar 

  • Gerwinn S, Macke JH, Bethge M (2011) Reconstructing stimuli from the spike times of leaky integrate and fire neurons. Front Neurosci 5:1–9

    Article  PubMed Central  PubMed  Google Scholar 

  • Gestri G (1971) Pulse frequency modulation in neural systems. Biophys J 11:98–109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Giraudo MT, Greenwood PE, Sacerdote L (2011) How sample paths of leaky integrate and fire models are influences by the presence of a firing threshold. Neural Comput 23(7):1743–1767

    Article  PubMed  Google Scholar 

  • Inoue J, Sato S, Ricciardi L (1995) On the parameter estimation for diffusion models of single neuron’s activities. Biol Cybern 73:209–221

    Article  CAS  PubMed  Google Scholar 

  • Iolov A, Ditlevsen S, Longtin A (2014) Fokker–Planck and Fortet equation-based parameter estimation for a leaky integrate-and-fire model with sinusoidal and stochastic forcing. J Math Neurosci 4(4):1–30. doi:10.1186/2190-8567-4-4

    Google Scholar 

  • Izhikevich EM (2003) Simple model of spiking neurons. IEEE Trans Neural Netw 14:1569–1572

    Article  CAS  PubMed  Google Scholar 

  • Jolivet R, Lewis TJ, Gerstner W (2004) Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy. J Neurophysiol 92:959–976

    Article  PubMed  Google Scholar 

  • Jolivet R, Rauch A, Luscher HR, Gerstner W (2006) Predicting spike timing of neocortical pyramidal neurons by simple threshold models. J Comput Neurosci 21:35–49

    Article  PubMed  Google Scholar 

  • Kim H, Shinomoto S (2012) Estimating nonstationary input signals from a single neuronal spike train. Phys Rev E 86:051903

    Article  Google Scholar 

  • Lansky P, Sanda P, He J (2006) The parameters of the stochastic leaky integrate-and-fire neuronal model. J Comput Neurosci 21:211– 223

    Article  PubMed  Google Scholar 

  • Lansky P, Sacerdote L, Zucca C (2007) Optimum signal in a diffusion leaky integrate-and-fire neuronal model. Math Biosci 207:261–274

    Article  PubMed  Google Scholar 

  • Lansky P, Sanda P, He J (2010) Effect of stimulation on the input parameters of stochastic leaky integrate-and-fire neuronal model. J Physiol 104:160–166

    Google Scholar 

  • Lazar AA (2004) Time encoding with an integrate-and-fire neuron with a refractory period. Neurocomputing 58:53–58

    Article  Google Scholar 

  • Lazar AA, Pnevmatikakis EA (2008) Faithful representation of stimuli with a population of integrate-and-fire neurons. Neural Comput 20:2715–2744

    Article  PubMed  Google Scholar 

  • Luenberger DG (1997) Optimization by vector space methods. Wiley, Hoboken

    Google Scholar 

  • Mihalas S, Niebur E (2009) A generalized linear integrate-and-fire neural model produces diverse spiking behaviors. Neural Comput 21:704–718

    Article  PubMed Central  PubMed  Google Scholar 

  • Mullowney P, Iyengar S (2008) Parameter estimation for a leaky integrate-and-fire neuronal model from ISI data. J Comput Neurosci 24:179–194

    Article  PubMed  Google Scholar 

  • Naud R, Gerstner W (2012) The performance (and limits) of simple neuron models: generalizations of the leaky integrate-and-fire model. In: Le Novere N (ed) Computational systems neurobiology. Springer, NewYork

    Google Scholar 

  • Paninski L, Pillow JW, Simoncelli EP (2004) Maximum likelihood estimation of a stochastic integrate-and-fire neural encoding model. Neural Comput 16:2533–2561

    Article  PubMed  Google Scholar 

  • Picchini U, Ditlevsen S, De Gaetano A, Lansky P (2008) Parameters of the diffusion leaky integrate-and-fire neuronal model for a slowly fluctuating signal. Neural Comput 20:2696–2714

    Article  PubMed  Google Scholar 

  • Pillow JW, Ahmadian Y, Paninski L (2001) Model-based decoding, information estimation, and change-point detection techniques for multineuron spike trains. Neural Comput 23:1–45

    Article  Google Scholar 

  • Rudolph M, Destexhe A (2001) Correlation detection and resonance in neural systems with distributed noise sources. Phys Rev Lett 86:3662–3665

    Article  CAS  PubMed  Google Scholar 

  • Rudolph M, Destexhe A (2006) Analytical integrate-and-fire neuron models with conductance-based dynamics for event-driven simulation strategies. Neural Comput 18:2146–2210

    Article  PubMed  Google Scholar 

  • Sacerdote L, Giraudo NT (2013) Stochastic integrate and fire models: a review on mathematical methods and their applications. In: Bachar M (ed) Stochastic biomathematical models. Springer, NewYork

    Google Scholar 

  • Sanderson AC (1980) Input–output analysis of an IPFM neural model: effects of spike regularity and record length, IEEE Trans. Biomed Eng BME–27:120–131

    Google Scholar 

  • Seydnejad SR, Kitney RI (2001) Time-varying threshold integral pulse frequency modulation. IEEE Trans Biomed Eng 48:949–962

    Article  CAS  PubMed  Google Scholar 

  • Seydnejad S (2008) Fixed threshold modeling of an adjustable threshold integrate-and-fire neuronal model. In: Proceedings of the 30th IEEE EMBS Conference, pp 2481–2484

  • Shimokawa T, Pakdaman K, Sato S (1999) Mean discharge frequency locking in the response of a noisy neuron model to subthreshold periodic stimulation. Phys Rev E 60:R33

    Article  CAS  Google Scholar 

  • Shlizerman E, Holmes P (2012) Neural dynamics, bifurcations, and firing rates in a quadratic integrate-and-fire model with a recovery variable. I: deterministic behavior. Neural Comput 24:2078–2118

    Article  PubMed  Google Scholar 

  • Smith GD, Cox CL, Sherman SM, Rinzel J (2000) Fourier analysis of sinusoidally driven thalamocortical relay neurons and a minimal integrate-and-fire-or-burst model. J Neurophysiol 83:588–610

    CAS  PubMed  Google Scholar 

  • Stacey WC, Durand DM (2001) Synaptic noise improves detection of subthreshold signals in hippocampal CA1 neurons. J Neurophysiol 86:1104–1112

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeid R. Seydnejad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seydnejad, S.R. Reconstruction of the input signal of the leaky integrate-and-fire neuronal model from its interspike intervals. Biol Cybern 110, 3–15 (2016). https://doi.org/10.1007/s00422-015-0671-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-015-0671-5

Keywords

Navigation