Skip to main content
Log in

Low frequency eardrum directionality in the barn owl induced by sound transmission through the interaural canal

  • Prospects
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The middle ears of birds are typically connected by interaural cavities that form a cranial canal. Eardrums coupled in this manner may function as pressure difference receivers rather than pressure receivers. Hereby, the eardrum vibrations become inherently directional. The barn owl also has a large interaural canal, but its role in barn owl hearing and specifically in sound localization has been controversial so far. We discuss here existing data and the role of the interaural canal in this species and add a new dataset obtained by laser Doppler vibrometry in a free-field setting. Significant sound transmission across the interaural canal occurred at low frequencies. The sound transmission induces considerable eardrum directionality in a narrow band from 1.5 to 3.5 kHz. This is below the frequency range used by the barn owl for locating prey, but may conceivably be used for locating conspecific callers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bierman HS, Thornton JL, Jones HG et al (2014) Biophysics of directional hearing in the American alligator (Alligator mississippiensis). J Exp Biol 217:1094–1107. doi:10.1242/jeb.092866

    Article  PubMed  PubMed Central  Google Scholar 

  • Bühler P, Epple W (1980) Die Lautäußerungen der Schleiereule (Tyto alba). J Ornithol 121(1):36–70

    Article  Google Scholar 

  • Calford MB (1988) Constraints on the coding of sound frequency imposed by the avian interaural canal. J Comp Physiol A 162:491–502. doi:10.1007/BF00612514

    Article  Google Scholar 

  • Calford MB, Piddington RW (1988) Avian interaural canal enhances interaural delay. J Comp Physiol A 162:503–510. doi:10.1007/BF00612515

    Article  Google Scholar 

  • Cazettes F, Fischer BJ, Peña JL (2014) Spatial cue reliability drives frequency tuning in the barn Owl’s midbrain. Elife. doi:10.7554/eLife.04854

  • Christensen-Dalsgaard J (2011) Vertebrate pressure-gradient receivers. Hear Res 273:37–45. doi:10.1016/j.heares.2010.08.007

    Article  PubMed  Google Scholar 

  • Christensen-Dalsgaard J, Manley G (2005) Directionality of the lizard ear. J Exp Biol 208:1209–1217. doi:10.1242/jeb.01511

    Article  PubMed  Google Scholar 

  • Christensen-Dalsgaard J, Manley GA (2008) Acoustical coupling of lizard eardrums. J Assoc Res Otolaryngol 9:407–416. doi:10.1007/s10162-008-0130-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Christensen-Dalsgaard J, Tang Y, Carr CE (2011) Binaural processing by the gecko auditory periphery. J Neurophysiol 105:1992–2004. doi:10.1152/jn.00004.2011

    Article  PubMed  Google Scholar 

  • Coles RB, Guppy A (1988) Directional hearing in the barn owl (Tyto alba). J Comp Physiol A 163:117–133

    Article  CAS  PubMed  Google Scholar 

  • Counter SA, Borg E (1979) Physiological activation of the stapedius muscle in Gallus gallus. Acta Otolaryngol 403:13–19

    Article  Google Scholar 

  • Dyson M, Klump G, Gauger B (1998) Absolute hearing thresholds and critical masking ratios in the European barn owl: a comparison with other owls. J Comp Physiol A 182(5):695–702

    Article  Google Scholar 

  • Hausmann L, von Campenhausen M, Wagner H (2010) Properties of low-frequency head-related transfer functions in the barn owl (Tyto alba). J Comp Physiol A 169(9):601–612. doi:10.1007/s00359-010-0546-0

    Article  Google Scholar 

  • Keller CH, Hartung K, Takahashi TT (1998) Head-related transfer functions of the barn owl: measurement and neural responses. Hear Res 118:13–34. doi:10.1016/S0378-5955(98)00014-8

    Article  CAS  PubMed  Google Scholar 

  • Kettler L, Wagner H (2014) Influence of double stimulation on sound-localization behavior in barn owls. J Comp Physiol A 200(12):1033–1044. doi:10.1007/s00359-014-0953-8

    Article  Google Scholar 

  • Knudsen EI, Konishi M (1979) Mechanisms of sound localization in the barn owl (Tyto alba). J Comp Physiol A 133:13–21

    Article  Google Scholar 

  • Konishi M (1973) How the owl tracks its prey. Am Sci 61:414–424

    Google Scholar 

  • Köppl C, Carr CE (2003) Computational diversity in the cochlear nucleus angularis of the barn owl. J Neurophysiol 89:2313–2329. doi:10.1152/jn.00635.2002

    Article  PubMed  Google Scholar 

  • Larsen ON, Dooling RJ, Michelsen A (2006) The role of pressure difference reception in the directional hearing of budgerigars (Melopsittacus undulatus). J Comp Physiol A 192(10):1063–1072. doi:10.1007/s00359-006-0138-1

    Article  Google Scholar 

  • Larsen ON, Dooling RJ, Ryals BM (1997) Roles of intracranial air pressure in bird audition. In: Lewis ER, Long JR, Lyon RF et al (eds) Diversity in auditory mechanics. World Scientific, Singapore, pp 11–17

    Google Scholar 

  • Michelsen A, Heller KG, Stumpner A, Rohrseitz K (1994) A new biophysical method to determine the gain of the acoustic trachea in bush-crickets. J Comp Physiol A 175:145–151. doi:10.1007/bf00215110

    Article  CAS  PubMed  Google Scholar 

  • Michelsen A, Larsen ON (2008) Pressure difference receiving ears. Bioinspir Biomim 3:011001. doi:10.1088/1748-3182/3/1/011001

    Article  PubMed  Google Scholar 

  • Moiseff A, Konishi M (1981) The owl’s interaural pathway is not involved in sound localization. J Comp Neurol 144:299–304

    Google Scholar 

  • Norberg RA (1968) Physical factors in directional hearing in Aegolius funereus (Linné) (Strigiformes), with special reference to the significance of the asymmetry of the external ears. Ark Zool 20:181–204

    Google Scholar 

  • Payne RS (1971) Acoustic location of prey by barn owls (Tyto alba). J Exp Biol 54:535–573

    CAS  PubMed  Google Scholar 

  • Poganiatz I, Wagner H (2001) Sound-localization experiments with barn owls in virtual space: influence of broadband interaural level difference on head-turning behavior. J Comp Physiol A 187:225–233

    Article  CAS  PubMed  Google Scholar 

  • Singheiser M, Plachta DTT, Brill S et al (2010) Target-approaching behavior of barn owls (Tyto alba): influence of sound frequency. J Comp Physiol A 196:227–240. doi:10.1007/s00359-010-0508-6

    Article  Google Scholar 

  • Stellbogen E (1930) Über das äußere und mittlere Ohr des Waldkauzes (Syrnium Aluco L.). Zeitschrift für Morphol und Ökologie der Tiere 19:686–731

    Article  Google Scholar 

  • Takahashi TT, Moiseff A, Konishi M (1984) Time and intensity cues are processed independently in the auditory system of the owl. J Neurosci 4:1781–1786

    CAS  PubMed  Google Scholar 

  • Vonderschen K, Wagner H (2009) Tuning to interaural time difference and frequency differs between the auditory arcopallium and the external nucleus of the inferior colliculus. J Neurophysiol 101:2348–2361. doi:10.1152/jn.91196.2008

  • Vonderschen K, Wagner H (2012) Transformation from a pure time delay to a mixed time and phase delay representation in the auditory forebrain pathway. J Neurosci 32:5911–5923. doi:10.1523/JNEUROSCI.5429-11.2012

    Article  CAS  PubMed  Google Scholar 

  • Vossen C, Christensen-Dalsgaard J, van Hemmen JL (2010) Analytical model of internally coupled ears. J Acoust Soc Am 128:909–918. doi:10.1121/1.3455853

    Article  PubMed  Google Scholar 

  • Wagner H, Kettler L, Orlowski J, Tellers P (2013) Neuroethology of prey capture in the barn owl (Tyto alba L.). J Physiol 107:51–61. doi:10.1016/j.jphysparis.2012.03.004

    Google Scholar 

  • White LB, Boashash B (1990) Cross spectral analysis of nonstationary processes. IEEE Trans Inf Theory 36:830–835. doi:10.1109/18.53742

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank S. Brill for technical assistance and logistical support and K.L. Willis and C.E. Carr for providing a 3D-reconstruction of the interaural canal. This work was supported by the Deutsche Forschungsgemeinschaft (Grant WA 606/20-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutz Kettler.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

The owls were treated and cared for in accordance with the guidelines of the “Landespräsidium für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen, Recklinghausen, Germany”.

Additional information

This article belongs to a Special Issue on Internally Coupled Ears.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kettler, L., Christensen-Dalsgaard, J., Larsen, O.N. et al. Low frequency eardrum directionality in the barn owl induced by sound transmission through the interaural canal. Biol Cybern 110, 333–343 (2016). https://doi.org/10.1007/s00422-016-0689-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-016-0689-3

Keywords

Navigation