Skip to main content
Log in

Anatomical influences on internally coupled ears in reptiles

  • Prospects
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Many reptiles, and other vertebrates, have internally coupled ears in which a patent anatomical connection allows pressure waves generated by the displacement of one tympanic membrane to propagate (internally) through the head and, ultimately, influence the displacement of the contralateral tympanic membrane. The pattern of tympanic displacement caused by this internal coupling can give rise to novel sensory cues. The auditory mechanics of reptiles exhibit more anatomical variation than in any other vertebrate group. This variation includes structural features such as diverticula and septa, as well as coverings of the tympanic membrane. Many of these anatomical features would likely influence the functional significance of the internal coupling between the tympanic membranes. Several of the anatomical components of the reptilian internally coupled ear are under active motor control, suggesting that in some reptiles the auditory system may be more dynamic than previously recognized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baird I (1970) The anatomy of the reptile ear. In: Gans C, Parsons T (eds) Biology of the reptilia, vol 2. Academic Press, New York, pp 193–275

    Google Scholar 

  • Bierman H, Thornton J, Jones H, Koka K, Young B, Brandt C, Christensen-Dalsgaard J, Carr C, Tollin D (2014) Biophysics of directional hearing in the American alligator (Alligator mississippiensis). J Exp Biol 217:1094–1107

    Article  PubMed  PubMed Central  Google Scholar 

  • Carpenter C, Ferguson G (1977) Variation and evolution of stereotyped behavior in reptiles. In: Gans C, Tinkle D (eds) Biology of the reptilia, vol 7. Academic Press, New York, pp 335–554

    Google Scholar 

  • Carr C, Christensen-Dalsgaard J, Edds-Walton P, Köppl C, Tang Y, Young B, Willis K (2017) Evolutionary trends in hearing in nonmammalian vertebrates. In: Kaas J (ed) Evolution of nervous systems. Elsevier, New York (in press)

    Google Scholar 

  • Carr C, Code R (2000) The central auditory system of reptiles. In: Dooling R, Fay R, Popper A (eds) Comparative hearing: birds and reptiles. Springer, New York, pp 197–248

    Chapter  Google Scholar 

  • Christensen C, Christensen-Dalsgaard J, Brandt C, Madsen P (2011) Hearing with an atympanic ear: good vibration and poor sound-pressure detection in the royal python, Python regius. J Exp Biol 215:331–342

    Article  Google Scholar 

  • Christensen-Dalsgaard J (2011) Vertebrate pressure-gradient receivers. Hear Res 273:37–45

    Article  PubMed  Google Scholar 

  • Christensen-Dalsgaard J, Manley G (2005) Directionality of the lizard ear. J Exp Biol 208:1209–1217

    Article  PubMed  Google Scholar 

  • Christensen-Dalsgaard J, Manley G (2008) Acoustic coupling of lizard eardrums. J Assoc Res Otolaryngol 9:407–416

    Article  PubMed  PubMed Central  Google Scholar 

  • Christensen-Dalsgaard J, Manley G (2014) The malleable middle ear: an underappreciated player in the evolution of hearing in vertebrates. In: Köppl C, Manley G, Popper A, Fay R (eds) Insights from comparative hearing research. Springer, New York, pp 157–191

    Google Scholar 

  • Colbert E (1946) The Eustachian tubes in the Crocodilia. Copeia 1946:12–14

    Article  Google Scholar 

  • Dufeau D, Witmer L (2015) Ontogeny of the middle-ear air-sinus system in Alligator mississippiensis (Archosauria: Crocodilia). PLoS ONE 10(9):e0137060. doi:10.1371/journal.pone.0137060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gridi-Papp M, Feng AS, Shen J, Yu ZL, Rosowski J, Narins P (2008) Active control of ultrasonic hearing in frogs. Proc Natl Acad Sci (USA) 105:11014–11019

    Article  CAS  Google Scholar 

  • Han D, Young B (2016) Anatomical basis of dynamic modulation of tympanic tension in the water monitor lizard, Varanus salvator. Anat Rec 299:1270–1280

    Article  Google Scholar 

  • Henson O (1974) Comparative anatomy of the middle ear. In: Keidel W, Neff D (eds) Handbook of sensory physiology, vol 1. Springer, New York, pp 39–110

    Google Scholar 

  • Kley N (2006) Morphology of the lower jaw and suspension in the Texas blindsnake, Leptotyphlops dulcis (Scolecophidia, Leptotyphlopidae). J Morphol 267:494–515

    Article  PubMed  Google Scholar 

  • Manley G (1977) Response patterns and peripheral origin of auditory nerve fibers in the monitor lizard, Varanus bengalensis. J Comp Physiol A 118:249–260

    Article  Google Scholar 

  • Manley G (1990) Peripheral hearing mechanisms in reptiles and birds. Springer, Berlin

    Book  Google Scholar 

  • Manley G (2002) Evolution of structure and function of the hearing organs of lizards. J Neurobiol 53:202–211

    Article  PubMed  Google Scholar 

  • Manley G, Kraus J (2010) Exceptional high-frequency hearing and matched vocalizations in Australian pygopod geckos. J Exp Biol 213:1876–1885

    Article  PubMed  Google Scholar 

  • Miall L (1878) The skull of the crocodile. Studies in comparative anatomy (No. 1). Macmillan and Company, London

    Google Scholar 

  • Owerkowicz T, Farmer CG, Hicks JW, Brainerd EL (1999) Contribution of gular pumping to lung ventilation in monitor lizards. Science 284:1661–1663

    Article  CAS  PubMed  Google Scholar 

  • Owerkowicz T, Brainerd EL, Carrier DR (2001) Electromyographic pattern of the gular pump in monitor lizards. Bull Mus Comp Zool 156:237–248

    Google Scholar 

  • Rieppel O (1980) The sound-transmitting apparatus in primitive snakes and its phylogenetic significance. Zoomorphology 96:45–62

    Article  Google Scholar 

  • Ruggero M, Temchin A (2002) The roles of the external, middle, and inner ears in determining the bandwidth of hearing. Proc Natl Acad Sci USA 99:13206–13210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saunders J, Duncan R, Doan D, Werner Y (2000) The middle ear of reptiles and birds. In: Dooling R, Fay R, Popper A (eds) Comparative hearing: birds and reptiles. Springer, New York, pp 13–69

    Chapter  Google Scholar 

  • Vedurmudi AP, Goulet J, Christensen-Dalsgaard J, Young BA, Williams R, van Hemmen JL (2016a) How internally coupled ears generate temporal and amplitude cues for sound localization. Phys Rev Lett 116:028101

    Article  CAS  PubMed  Google Scholar 

  • Vedurmudi AP, Young BA, van Hemmen JL (2016b) Internally coupled ears: mathematical structures and mechanisms underlying ICE. Biol Cyber (in press)

  • Versluys J (1898) Die mittlere und äussere Ohrsphäre der Lacertilia und Rhynchocephalia. Zool Jahrb Abt Anat 12:161–406

    Google Scholar 

  • Vossen C, Christensen-Dalsgaard J, van Hemmen JL (2010) Analytical model of internally coupled ears. J Acoust Soc Am 128:909–918

    Article  PubMed  Google Scholar 

  • Werner Y, Igic P (2002) The middle ear of gekkonoid lizards: interspecific variation of structure in relation to body size and to auditory sensitivity. Hear Res 167:33–45

    Article  PubMed  Google Scholar 

  • Wever EG (1973) Closure muscles of the external auditory meatus in Gekkonidae. J Herpetol 7:323–329

    Article  Google Scholar 

  • Wever EG (1978) The reptile ear: its structure and function. Princeton University Press, Princeton

    Google Scholar 

  • Wever EG, Werner Y (1970) The function of the middle ear in lizards: Crotaphytus collaris (Iguanidae). J Exp Zool 175:327–342

    Article  CAS  PubMed  Google Scholar 

  • Willis K, Christensen-Dalsgaard J, Carr C (2014) Auditory brain stem processing in reptiles and amphibians: roles of coupled ears. In: Köppl C, Manley G, Popper A, Fay R (eds) Insights from comparative hearing research. Springer, New York, pp 193–225

    Google Scholar 

  • Witmer L, Ridgely R (2008) The paranasal air sinuses of predatory and armored dinosaurs (Archosauria: Theropoda and Ankylosauria) and their contribution to cephalic structure. Anat Rec 291:1362–1388

    Article  Google Scholar 

  • Young B (2003) Snake bioacoustics: toward a richer understanding of the behavioral ecology of snakes. Q Rev Biol 78:303–325

    Article  PubMed  Google Scholar 

  • Young B (2015) The evolution of the snake ear and its restricted frequency response range. In: Bineda-Edwards O, Powell L, Jamniczky H, Bauer A, Theodor J (eds) All animals are interesting: a festschrift in honour of Anthony P. Russell. BIS, Oldenburg, pp 423–438

    Google Scholar 

  • Young BA, Mathevon N, Tang Y (2014) Reptile auditory neuroethology: What do reptiles do with their hearing? In: Köppl C, Manley G, Popper A, Fay R (eds) Insights from comparative hearing research. Springer, New York, pp 323–346

    Google Scholar 

Download references

Acknowledgments

This work stems from my participation in the 2014 International Symposium on Internally Coupled Ears, and I am indebted to the organizers (C. Carr, J. Christensen-Dalsgaard, and J.L. van Hemmen) for their hospitality and kindness. Much of this essay was drafted while a guest of the Chinese Academy of Sciences; I am indebted to the CAS and Prof. Yehzong Tang for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce A. Young.

Additional information

This article belongs to a Special Issue on Internally Coupled Ears (ICE).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Young, B.A. Anatomical influences on internally coupled ears in reptiles. Biol Cybern 110, 255–261 (2016). https://doi.org/10.1007/s00422-016-0699-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-016-0699-1

Keywords

Navigation