Skip to main content
Log in

Order reduction and efficient implementation of nonlinear nonlocal cochlear response models

  • Original Article
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The cochlea is an indispensable preliminary processing stage in auditory perception that employs mechanical frequency-tuning and electrical transduction of incoming sound waves. Cochlear mechanical responses are shown to exhibit active nonlinear spatiotemporal response dynamics (e.g., otoacoustic emission). To model such phenomena, it is often necessary to incorporate cochlear fluid–membrane interactions. This results in both excessively high-order model formulations and computationally intensive solutions that limit their practical use in simulating the model and analyzing its response even for simple single-tone inputs. In order to address these limitations, the current work employs a control-theoretic framework to reformulate a nonlinear two-dimensional cochlear model into discrete state space models that are of considerably lower order (factor of 8) and are computationally much simpler (factor of 25). It is shown that the reformulated models enjoy sparse matrix structures which permit efficient numerical manipulations. Furthermore, the spatially discretized models are linearized and simplified using balanced transformation techniques to result in lower-order (nonlinear) realizations derived from the dominant Hankel singular values of the system dynamics. Accuracy and efficiency of the reduced-order reformulations are demonstrated under the response to two fixed tones, sweeping tones and, more generally, a brief speech signal. The corresponding responses are compared to those produced by the original model in both frequency and spatiotemporal domains. Although carried out on a specific instance of cochlear models, the introduced framework of control-theoretic model reduction could be applied to a wide class of models that address the micro- and macro-mechanical properties of the cochlea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Antoulas AC (2005) Approximation of large-scale dynamical systems, vol 6. Society for Industrial Mathematics, Philadelphia

    Book  Google Scholar 

  • Baker GJ (2000) Pressure-feedforward and piezoelectric amplification models for the cochlea. Stanford University, Stanford

    Google Scholar 

  • Bell A (2007) Tuning the cochlea: wave-mediated positive feedback between cells. Biol Cybern 96:421–438. doi:10.1007/s00422-006-0134-0

    Article  PubMed  Google Scholar 

  • Bendor D, Wang X (2005) The neuronal representation of pitch in primate auditory cortex. Nature 436:1161–1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertaccini D, Sisto R (2011) Fast numerical solution of nonlinear nonlocal cochlear models. J Comput Phys 230:2575–2587

    Article  Google Scholar 

  • Elliott SJ, Ku EM, Lineton B (2007) A state space model for cochlear mechanics. J Acoust Soc Am 122:2759

    Article  PubMed  Google Scholar 

  • Eronen A, Klapuri (2000) A Musical instrument recognition using cepstral coefficients and temporal features. In: Acoustics, speech, and signal processing, 2000. ICASSP’00. Proceedings. 2000 IEEE international conference on, IEEE, vol 752, pp II753–II756

  • Gao SS et al (2014) Vibration of the organ of Corti within the cochlear apex in mice. J Neurophysiol. doi:10.1152/jn.00306.02014

    PubMed  PubMed Central  Google Scholar 

  • Gugercin S, Antoulas AC (2004) A survey of model reduction by balanced truncation and some new results. Int J Control 77:748–766

    Article  Google Scholar 

  • Hasan MR, Jamil M, Rahman MGRMS (2004) Speaker identification using Mel frequency cepstral coefficients variations 1:4

  • Hassan E-S (1985) A suggested role for secondary flow in the stimulation of the cochlear hair cell. Biol Cybern 53:109–119. doi:10.1007/BF00337027

    Article  Google Scholar 

  • Hudspeth A (2008) Making an effort to listen: mechanical amplification in the ear. Neuron 59:530–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahn AF, Santos-Sacchi J (2001) Physiology of the ear. Taylor & Francis, New York

    Google Scholar 

  • Joosten ER, Neri P (2012) Human pitch detectors are tuned on a fine scale, but are perceptually accessed on a coarse scale. Biol Cybern 106:465–482

    Article  PubMed  Google Scholar 

  • Kim Y, Xin J (2005) A two-dimensional nonlinear nonlocal feed-forward cochlear model and time domain computation of multitone interactions. Multiscale Model Simul 4:664–690

    Article  Google Scholar 

  • Lamar A, Todd, Gonzalez O (2005) Human acoustics: from vocal chords to inner ear

  • LaMar MD, Xin J, Qi Y (2006) Signal processing of acoustic signals in the time domain with an active nonlinear nonlocal cochlear model. Signal Process 86:360–374

    Article  Google Scholar 

  • Large EW (2010) Neurodynamics of music music perception. 201–231

  • Large EW, Almonte FV, Velasco MJ (2010) A canonical model for gradient frequency neural networks. Phys D Nonlinear Phenom 239:905–911

    Article  CAS  Google Scholar 

  • Lee HY, Raphael PD, Park J, Ellerbee AK, Applegate BE, Oghalai JS (2015) Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea. Proc Natl Acad Sci 112:3128–3133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Logan B (2000) Mel frequency cepstral coefficients for music modeling. In: International symposium on music information retrieval, p 5

  • Mammano F (1990) Modeling auditory system nonlinearities through Volterra series. Biol Cybern 63:307–313. doi:10.1007/BF00203454

    Article  Google Scholar 

  • Medvedev AV, Chiao F, Kanwal JS (2002) Modeling complex tone perception: grouping harmonics with combination-sensitive neurons. Biol Cybern 86:497–505. doi:10.1007/s00422-002-0316-3

    Article  PubMed  Google Scholar 

  • Murphy W, Talmadge C, Tubis A, Long G (1995) Relaxation dynamics of spontaneous otoacoustic emissions perturbed by external tones. I. Response to pulsed single-tone suppressors. J Acoust Soc Am 97:3702

    Article  CAS  PubMed  Google Scholar 

  • Narayan SS, Temchin AN, Recio A, Ruggero MA (1998) Frequency tuning of basilar membrane and auditory nerve fibers in the same cochleae. Science 282:1882–1884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neely ST (1981) Finite difference solution of a two-dimensional mathematical model of the cochlea. J Acoust Soc Am 69:1386

    Article  CAS  PubMed  Google Scholar 

  • Neely ST, Kim D (1986) A model for active elements in cochlear biomechanics. J Acoust Soc Am 79:1472

    Article  CAS  PubMed  Google Scholar 

  • Nilsson HG (1978) A comparison of models for sharpening of the frequency selectivity in the coachlea. Biol Cybern 28:177–181. doi:10.1007/BF00337139

    Article  CAS  PubMed  Google Scholar 

  • Probst R, Lonsbury-Martin BL, Martin GK (1991) A review of otoacoustic emissions. J Acoust Soc Am 89:2027–2067

    Article  CAS  PubMed  Google Scholar 

  • Regan M (1994) A method for calculating the spectral response of a hair cell to a pure tone. Biol Cybern 71:13–16. doi:10.1007/BF00198907

    Article  CAS  PubMed  Google Scholar 

  • Robinson DJ, Hawksford MO (2000) Psychoacoustic models and non-linear human hearing. Preprints-Audio Engineering Society

  • Robles L, Ruggero MA (2001) Mechanics of the mammalian cochlea. Physiol Rev 81:1305–1352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens SS, Volkmann J, Newman E (1937) A scale for the measurement of the psychological magnitude pitch. J Acoust Soc Am 8:185–190

    Article  Google Scholar 

  • van der Heijden M, Joris PX (2006) Panoramic measurements of the apex of the cochlea. J Neurosci 26:11462–11473

    Article  CAS  PubMed  Google Scholar 

  • Von Békésy G, Wever EG (1960) Experiments in hearing, vol 8. McGraw-Hill, New York

    Google Scholar 

  • Xin J (2004) Dispersive instability and its minimization in time-domain computation of steady-state responses of cochlear models. J Acoust Soc Am 115:2173

    Article  PubMed  Google Scholar 

  • Zwicker E (1979) A model describing nonlinearities in hearing by active processes with saturation at 40 dB. Biol Cybern 35:243–250. doi:10.1007/BF00344207

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding was provided by The University Research Board (URB) at the American University of Beirut and a partnership between Intel Corporation and King Abdul-Aziz City for Science and Technology (KACST) to conduct and promote research in the Middle East.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurice Filo.

Appendices

Appendix 1: Efficiently computing \(\hbox {A}_{\mathrm{R2}}\)

Let

$$\begin{aligned} A_{B2} =\mu A_N \tau \end{aligned}$$

where:

$$\begin{aligned} \mu =T.\hbox {Mass}^{-1}\qquad \tau =A_{LA} .T^{-1} \end{aligned}$$

Let’s divide \(\mu \), \(\tau \) and \(A_N \) into block matrices:

$$\begin{aligned} A_N= & {} \left[ {{\begin{array}{c@{\quad }c} A_{N1} &{} 0_{k,N-k} \\ 0_{N-k,k}&{} A_{N2} \\ \end{array} }} \right] ;\\ \mu= & {} \left[ {{\begin{array}{c@{\quad }c} \mu _{11} &{} \mu _{12}\\ \mu _{21} &{} \mu _{22} \\ \end{array} }} \right] ; \tau =\left[ {{\begin{array}{c@{\quad }c} \tau _{11} &{} \tau _{12} \\ \tau _{21} &{} \tau _{22} \\ \end{array}}} \right] \end{aligned}$$

where:

$$\begin{aligned} \begin{array}{cc} A_{N1} , \mu _{11} \,\, \hbox {and} \,\, \tau _{11} \epsilon \mathbb {R}^{k\cdot k} &{} \qquad A_{N2} , \mu _{22} \,\,\hbox {and} \,\,\tau _{22} \mathbb {R}^{k\cdot k} \\ \mu _{12} \,\, \hbox {and} \,\, \tau _{12} \epsilon \mathbb {R}^{k\cdot \left( {N-k} \right) } &{} \qquad \mu _{21} \,\, \hbox {and} \,\, \tau _{21} \epsilon \mathbb {R}^{\left( {N-k} \right) \cdot k} \end{array} \end{aligned}$$

Then:

$$\begin{aligned} A_{R2} =\mu _{11} \cdot A_{N1} \cdot \tau _{11} +\mu _{12} \cdot A_{N2} \cdot \tau _{21} \end{aligned}$$

To reduce the simulation time, the calculation of \(A_{R2} \) should be done according to the value of k. As a matter of fact, there are 3 cases: \(k<2N,\,2N<k<3N\) and \(3N<k<4N\). The first case is shown here and the other cases follow similar reasoning.

$$\begin{aligned} A_{N1}= & {} 0_k \\ A_{{N2}}= & {} \left[ {\begin{array}{c@{\quad }c@{\quad }c@{\quad }c} 0_{{2N - k}} &{} 0 &{} 0 \\ 0 &{} \hbox {diag}\left( {\vec {\gamma }\left( t \right) } \right) &{} 0 \\ 0 &{} 0 &{} 0_{N} \\ \end{array}} \right] \end{aligned}$$

Hence,

$$\begin{aligned} A_{{R2}} = \mu _{{122}} \cdot \left( {\vec {\gamma } \otimes \tau _{{212}}} \right) \end{aligned}$$

where,

$$\begin{aligned} \mu _{122}= & {} \mu _{12} \left( {1:k,2N-k+1:3N-k} \right) \\ \tau _{212}= & {} \tau _{21} \left( {2N-k+1:3N-k,1:k} \right) \end{aligned}$$

Appendix 2: List of operators

  • \(\cdot *:\) Element by element matrix multiplication

  • \(\cdot /\): Element by element matrix division

  • \(\cdot 2\): Element by element matrix square

Let

$$\begin{aligned} v=\left[ \begin{array}{c} v_1 \\ v_2 \\ \vdots \\ v_{n} \\ \end{array}\right] \qquad \qquad A=\left[ \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} a_{11}&{} a_{12} &{} \ldots &{} a_{1n} \\ a_{21} &{} a_{22} &{} \ldots &{} a_{2n} \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ a_{n1} &{} a_{n2} &{} \ldots &{} a_{nn} \\ \end{array} \right] \end{aligned}$$

Then, the operators: \(\otimes \) and d(.) are defined as follows:

$$\begin{aligned} v\otimes A= & {} \left[ \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} v_1 a_{11}&{} v_1 a_{12} &{} \ldots &{} v_1 a_{1n} \\ v_2 a_{21} &{} v_2 a_{22} &{} \ldots &{} v_2 a_{2n} \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ v_n a_{n1} &{} v_n a_{n2} &{} \ldots &{} v_n a_{nn} \\ \end{array} \right] \\ d\left( v \right)= & {} \left[ \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} v_{1} &{} 0&{}\ldots &{} 0 \\ 0&{} v_{2} &{} \ldots &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ 0&{} 0 &{} \ldots &{} v_{n} \\ \end{array}\right] \\ d\left( A \right)= & {} \left[ \begin{array}{c} a_{11} \\ a_{22} \\ \vdots \\ a_{nn} \\ \end{array} \right] \end{aligned}$$

Appendix 3: Terminologies and numerical values

Table 3 gives the terminologies and the values of the parameters referred to throughout the paper. The values are based on LaMar et al. (2006) in cgs units.

Table 3 List of parameters, symbols and numerical values

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filo, M., Karameh, F. & Awad, M. Order reduction and efficient implementation of nonlinear nonlocal cochlear response models. Biol Cybern 110, 435–454 (2016). https://doi.org/10.1007/s00422-016-0703-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-016-0703-9

Keywords

Navigation