Skip to main content
Log in

Simulation on a quantum computer

  • Reguläre Beiträge
  • Published:
Informatik - Forschung und Entwicklung

Abstract

A promising application of future quantum computers is the simulation of physical systems of a quantum nature. It has been estimated that a quantum computer operating with as few as 50–100 logical qubits would be capable of obtaining simulation results that are inaccessible to classical computers. This chapter explains the basic principles of simulation on a quantum computer and reviews some applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abrams DS, Lloyd S (1997) Simulation of many-body Fermi systems on a universal quantum computer. Phys Rev Lett 79:2586

    Article  Google Scholar 

  2. Abrams DS, Lloyd S (1999) Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors. Phys Rev Lett 83:5162

    Article  Google Scholar 

  3. Arnold VI, Avez A (1968) Ergodic Problems of Classical Mechanics. Benjamin, New York

    MATH  Google Scholar 

  4. Balazs NL, Voros A (1989) The quantized baker’s transformation. Ann Phys 190:1

    Article  MATH  MathSciNet  Google Scholar 

  5. Benenti G, Casati G, Montangero S, Shepelyansky DL (2001) Efficient quantum computing of complex dynamics. Phys Rev Lett 87:227901

    Article  Google Scholar 

  6. Berry MV, Balazs NL, Tabor M, Voros A (1979) Quantum maps. Ann Phys 122:26

    Article  MathSciNet  Google Scholar 

  7. Boghosian BM, Taylor W (1998) Simulating quantum mechanics on a quantum computer. Physica D 120:30

    Article  MATH  MathSciNet  Google Scholar 

  8. Brun TA, Schack R (1999) Realizing the quantum baker’s map on a NMR quantum computer. Phys Rev A 59:2649

    Article  Google Scholar 

  9. Diósi L (2002) Comment on ‘‘Stable quantum computation of unstable classical chaos’’. Phys Rev Lett 88:219801

    Article  Google Scholar 

  10. Ekert AK, Alves CM, Oi D KL Horodecki M, Horodecki P, Kwek LC (2002) Direct estimations of linear and non-linear functionals of a quantum state. Phys Rev Lett 88:217901

    Article  Google Scholar 

  11. Feynman RP (1982) Simulating physics with computers. Int J Theor Phys 21:467

    MathSciNet  Google Scholar 

  12. Georgeot B (2004) Quantum computing of Poincaré recurrences and periodic orbits. Phys Rev A 69:032301

    Article  MathSciNet  Google Scholar 

  13. Georgeot B, Shepelyansky DL (2001) Stable quantum computation of unstable classical chaos. Phys Rev Lett 86:5393

    Article  Google Scholar 

  14. Georgeot B, Shepelyansky DL (2002) Georgeot and Shepelyansky reply. Phys Rev Lett 88:219802

    Article  Google Scholar 

  15. Hubbard J (1963) Proc R Soc A 276:238

    Google Scholar 

  16. Jané E, Vidal G, Dür W, Zoller P, Cirac JI (2003) Simulation of quantum dynamics with quantum optical systems. Quantum Inf Comput 3:15

    MathSciNet  MATH  Google Scholar 

  17. Kalos MH, Levesque D, Verlet L (1974) Helium at zero temperature with hard-sphere and other forces. Phys Rev A 9:2178

    Article  Google Scholar 

  18. Knill E, Laflamme R (1998) On the power of one bit of quantum information. Phys Rev Lett 81:5672

    Article  Google Scholar 

  19. Lidar DA, Biham O (1997) Simulating Ising spin glasses on a quantum computer. Phys Rev E 56:3661

    Article  Google Scholar 

  20. Lloyd S (1996) Universal quantum simulators. Science 273:1073

    MathSciNet  Google Scholar 

  21. Maassen van den Brink A (2001) Comments on ‘‘Stable quantum computation of unstable classical chaos’’, ‘‘Efficient quantum computing insensitive to phase errors’’, and ‘‘Quantum computer inverting time arrow for macroscopic systems’’. E-print quant-ph/0112006

  22. Meyer DA (2001) Quantum computing classical physics. E-print quant-ph/0111069

  23. Miquel C, Paz JP, Saraceno M, Knill E, Laflamme R, Negrevergne C (2002) Interpretation of tomography and spectroscopy as dual forms of quantum computation. Nature 418:59

    Article  Google Scholar 

  24. Nielsen MA, Chuang IL (2000) Quantum Computation and Quantum Information. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  25. Ortiz G, Gubernatis JE, Knill E, Laflamme R (2001) Quantum algorithms for fermionic simulations. Phys Rev A 64:022319

    Article  Google Scholar 

  26. Poulin D, Blume-Kohout R, Laflamme R, Ollivier H (2004) Exponential speed-up with a single bit of quantum information: Testing the quantum butterfly effect. Phys Rev Lett 92:177906

    Article  Google Scholar 

  27. Poulin D, Laflamme R, Milburn GJ, Paz JP (2003) Testing integrability with a single bit of quantum information. Phys Rev A 68:022302

    Article  Google Scholar 

  28. Pravia MA, Chen ZY, Yepez J, Cory DG (2002) Towards a NMR implementation of a quantum lattice gas algorithm. Comput Phys Commun 146:339

    Article  MATH  MathSciNet  Google Scholar 

  29. Pravia MA, Chen Z, Yepez J, Cory DG (2003) Experimental demonstration of quantum lattice gas computation. E-print quant-ph/0303183

  30. Saraceno M (1990) Classical structures in the quantized baker’s transformation. Ann Phys 199:37

    Article  MATH  MathSciNet  Google Scholar 

  31. Saraceno M (1999) Private communication

  32. Schack R (1998) Using a quantum computer to investigate quantum chaos. Phys Rev A 57:1634

    Article  MathSciNet  Google Scholar 

  33. Somaroo SS, Tseng C-H Havel TF, Laflamme R, Cory DG (1999) Quantum simulations on a quantum computer. Phys Rev Lett 82:5381

    Article  Google Scholar 

  34. Somma R, Ortiz G, Gubernatis JE, Knill E, Laflamme R (2002) Simulating physical phenomena by quantum networks. Phys Rev A 65:042323

    Article  Google Scholar 

  35. Somma R, Ortiz G, Knill E, Gubernatis J (2003) Quantum simulations of physics problems. E-print quant-ph/0304063

  36. Sornborger AT, Stewart ED (1999) Higher-order methods for simulations on quantum computers. Phys Rev A 60:1956

    Article  Google Scholar 

  37. Terhal BM, DiVincenzo DP (2000) Problem of equilibration and the computation of correlation functions on a quantum computer. Phys Rev A 61:022301

    Article  MathSciNet  Google Scholar 

  38. Terraneo M, Georgeot B, Shepelyansky DL (2003) Strange attractor simulated on a quantum computer. Eur Phys J D 22:127

    Article  MathSciNet  Google Scholar 

  39. Terraneo M, Shepelyansky DL (2004) Dynamical localization, measurements and quantum computing. Phys Rev Lett 92:037902

    Article  Google Scholar 

  40. Vidal G (2004) Efficient simulation of one-dimensional quantum many-body systems. Phys Rev Lett 93:040502

    Article  Google Scholar 

  41. Weinstein YS, Lloyd S, Emerson JV, Cory DG (2002) Experimental implementation of the quantum baker’s map. Phys Rev Lett 89:157902

    Article  MathSciNet  Google Scholar 

  42. Weyl H (1950) The Theory of Groups and Quantum Mechanics. Dover, New York

    Google Scholar 

  43. Wiesner S (1996) Simulations of many-body quantum systems by a quantum computer. E-print quant-ph/9603028

  44. Zalka C (2001) Comment on “Stable quantum computation of unstable classical chaos.” E-print quant-ph/0110019

  45. Zalka C (1998) Simulating quantum systems on a quantum computer. Proc R Soc London A 454:313

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rüdiger Schack.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schack, R. Simulation on a quantum computer . Informatik Forsch. Entw. 21, 21–27 (2006). https://doi.org/10.1007/s00450-006-0010-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00450-006-0010-0

Keywords

Navigation