Skip to main content
Log in

Non-computing applications of quantum information in NMR

  • Reguläre Beiträge
  • Published:
Informatik - Forschung und Entwicklung

Abstract

The field of quantum information processing has profited from many concepts and techniques of nuclear magnetic resonance (NMR) spectroscopy. Here, we discuss in which ways NMR spectroscopy can benefit from ideas of quantum information theory. The application of optimal control theory to quantum systems provides many examples for indirect cross fertilization between computing and non-computing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ernst RR, Bodenhausen G, Wokaun A (1987) Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Oxford University Press, Oxford

    Google Scholar 

  2. Chuang IL, Nielsen MA (2000) Quantum Computation and Quantum Information. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  3. Cory DG, Fahmy AF, TF Havel (1997) Proc Nat Acad Sci USA 94:1634

    Article  Google Scholar 

  4. Gershenfeld NA, Chuang IL (1997) Science 275:350

    Article  MathSciNet  Google Scholar 

  5. Mehring M (1999) Appl Magn Reson 17:141

    Article  Google Scholar 

  6. Jones JA (2000) Fortschr Phys 48:909–924

    Article  Google Scholar 

  7. Cory DG, Laflamme R, Knill E, Viola L, Havel TF, Boulant N, Boutis G, Fortunato E, Lloyd S, Martinez R, Negrevergne C, Pravia M, Sharf Y, Teklemariam G, Weinstein YS, Zurek WH (2000) Fortschr Phys 48:875

    Article  Google Scholar 

  8. Havel TF, Somaroo SS, Tseng CH, Cory DG (2000) Appl Algebr Eng Commun 10:339

    Article  MATH  MathSciNet  Google Scholar 

  9. Marx R, Fahmy AF, Myers JM, Bermel W, Glaser SJ (2000) Phys Rev A 62:012310

    Article  Google Scholar 

  10. Jones JA (2001) Prog NMR Spectrosc 38:325

    Article  Google Scholar 

  11. Jones JA (2001) Phys Chem Commun 11:11

    Google Scholar 

  12. Glaser S (2001) Angew Chem Int Edit 40:147

    Article  Google Scholar 

  13. Havel TF, Cory DG, Lloyd S, Boulant N, Fortunato EM, Pravia MA,Teklemariam G, Weinstein YS, Bhattacharyya A, Hou J (2002) Am J Phys 70:345

    Article  Google Scholar 

  14. Laflamme R, Knill E, Cory DG, Fortunato EM, Havel T, Miquel C, Martinez R, Negrevergne C, Ortiz G, Pravia MA, Sharf Y, Sinha S, Somma R, Viola L (2002) Los Alamos Sci 27:226

    Google Scholar 

  15. Ramanathan C, Boulant N, Chen Z, Cory DG, Chuang IL, Steffen M (2004) Quantum Inf Proc 3:15

    Article  MATH  Google Scholar 

  16. Vandersypen LMK, Steffen M, Breyta G, Yannoni CS, Sherwood MH, Chuang IL (2001) Nature 414:883

    Article  Google Scholar 

  17. Morris GA, Freeman R (1979) J Am Chem Soc 101:760

    Article  Google Scholar 

  18. Braunschweiler L, Ernst RR (1983) J Magn Reson 53:521

    Google Scholar 

  19. Glaser SJ, Quant JJ (1996) Adv Magn Reson 19:59

    Google Scholar 

  20. Haeberlen U, Waugh J (1968) Phys Rev 175:453

    Article  Google Scholar 

  21. Levitt MH, Freeman R, Frenkiel T (1983) Adv Magn Reson 11:47

    Google Scholar 

  22. Shaka AJ, Keeler J (1986) Prog NMR Spectrosc 19:47

    Article  Google Scholar 

  23. Feynman RP (1982) Int J Theor Phys 21:647

    MathSciNet  Google Scholar 

  24. Lloyd S (1996) Science 273:1073

    MathSciNet  Google Scholar 

  25. Bennett CH, Cirac JI, Leifer MS, Leung DW, Linden N, Popescu S, Vidal G (2002) Phys Rev A 66:012305

    Article  MathSciNet  Google Scholar 

  26. Janzing D, Wocjan P, Beth T (2002) Phys Rev A 66:042311

    Article  Google Scholar 

  27. Wocjan P, Rötteler M, Janzing D, Beth T (2002) Phys Rev A 65:042309

    Article  Google Scholar 

  28. Carr HY, Purcell EM (1954) Phys Rev 94:630

    Article  Google Scholar 

  29. Viola L, Lloyd S (1998) Phys Rev A 58:2733

    Article  MathSciNet  Google Scholar 

  30. Viola L, Knill E, Lloyd S (1999) Phys Rev Lett 82:2417

    Article  MATH  MathSciNet  Google Scholar 

  31. Haeberlen U (1976) Adv Magn Reson Suppl 1:1

    Google Scholar 

  32. Levitt MH (1986) Prog NMR Spectrosc 18:61

    Article  Google Scholar 

  33. Tycko R (1983) Phys Rev Lett 51:775

    Article  Google Scholar 

  34. Warren WS, Silver MS (1988) Adv Magn Reson 12:248

    Google Scholar 

  35. Freeman R (1991) Chem Rev 91:1397

    Article  Google Scholar 

  36. Cummins HK, Jones JA (2000) New J Phys 2:6

    Article  Google Scholar 

  37. Cummins HK, Llewellyn G, Jones JA (2003) Phys Rev A 67:042308

    Article  Google Scholar 

  38. Pravia A, Boulant N, Emerson J, Farid A, Fortunato EM, Havel TF, Martinez R, Cory DG (2003) J Chem Phys 119:9993

    Article  Google Scholar 

  39. Khaneja N, Reiss T, Kehlet C, Schulte-Herbrüggen T, Glaser SJ (2005) J Magn Reson 172:296

    Article  Google Scholar 

  40. Linden N, Barjat H, Kupce E, Freeman R (1998) Chem Phys Lett 296:198

    Article  Google Scholar 

  41. Schulte-Herbrüggen T, Sorensen OW (2000) Concept Magn Reson 12:389

    Article  Google Scholar 

  42. Jones JA, Knill E (1999) J Magn Reson 141:322

    Article  Google Scholar 

  43. Steffen M, Vandersypen LMK, Chuang IL (2000) J Magn Reson 146:369

    Article  Google Scholar 

  44. Shor PW (1995) Phys Rev A 52:R2493

    Article  Google Scholar 

  45. Knill E, Laflamme R (1997) Phys Rev A 55:900

    Article  MathSciNet  Google Scholar 

  46. Knill E, Laflamme R, Martinez R, Negrevergne C (2001) Phys Rev Lett 86:5811

    Article  Google Scholar 

  47. Sharf Y, Cory DG, Samaroo SS, Havel T, Knill E, Laflamme R (2000) Mol Phys 98:1347

    Article  Google Scholar 

  48. Zanardi P, Rasetti M (1998) Phys Rev Lett 79:3306

    Article  Google Scholar 

  49. Duan LM, Guo GC (1998) Phys Rev A 57:737

    Article  Google Scholar 

  50. Lidar DA, Chuang IL, Whaley KB (1998) Phys Rev Lett 81:2594

    Article  Google Scholar 

  51. Ollerenshaw JE, Lidar DA, Kay LE (2003) Phys Rev Lett 91:217904

    Article  Google Scholar 

  52. Redfield AG (1965) Adv Magn Reson 1:1

    Google Scholar 

  53. Peng JW, Wagner G (1994) In: Tycko R (ed) Nuclear Magnetic Resonance Probes of Molecular Dynamics. Kluwer Academic Publisher, Dordrecht

    Google Scholar 

  54. Griffey RH, Redfield AG (1987) Q Rev Biophys 19:51

    Article  Google Scholar 

  55. Bax A, Kay LE, Sparks SW, Torchia DA (1989) J Am Chem Soc 111:408

    Article  Google Scholar 

  56. Bax A, Ikura M, Kay LE, Torchia DA, Tschudin R (1990) J Magn Reson 86:304

    Google Scholar 

  57. Seip S, Balbach J, Kessler H (1992) J Magn Reson 100:406

    Google Scholar 

  58. Marino JP, Diener JL, Moore PB, Griesinger C (1997) J Am Chem Soc 119:7361

    Article  Google Scholar 

  59. Pervushin K, Riek R, Wider G, Wüthrich K (1997) Proc Nat Acad Sci USA 94:12366

    Article  Google Scholar 

  60. Salzmann M, Pervushin K, Wider G, Senn H, Wüthrich K (1998) Proc Nat Acad Sci USA 95:13585

    Article  Google Scholar 

  61. Tugarinov V, Hwang PM, Ollerenshaw JE, Kay LE (2003) J Am Chem Soc 125:10420

    Article  Google Scholar 

  62. Boykin PO, Mor T, Roychowdhury V, Vatan F, Vrijen R (2002) Proc Nat Acad Sci USA 99:3388

    Article  MATH  Google Scholar 

  63. Khaneja N, Brockett R, Glaser SJ (2001) Phys Rev A 63:032308

    Article  Google Scholar 

  64. Schulte-Herbrüggen T, Spörl A, Khaneja N, Glaser SJ (2005) Phys Rev A 72:042331

    Article  Google Scholar 

  65. Kraus B, Cirac JI (2001) Phys Rev A 63:062309

    Article  MathSciNet  Google Scholar 

  66. Makhlin Y (2002) Quantum Inf Proc 1:243

    Article  MathSciNet  Google Scholar 

  67. Zhang J, Vala J, Sastry S, Whaley KB (2003) Phys Rev A 67:042313

    Article  MathSciNet  Google Scholar 

  68. Miquel C, Paz JP, Saraceno M, Knill E, Laflamme R, Negrevergne C (2002) Nature 418:59

    Article  Google Scholar 

  69. Marx R, Fahmy AF, Myers JM, Bermel W, Glaser SJ (2000) In: Donkor E, Pirich AR (eds) Quantum Computing. Proceedings of SPIE 4047:131

  70. Knill E, Laflamme R, Martinez R, Tseng C-H (2000) Nature 404:368

    Article  Google Scholar 

  71. Khaneja N, Glaser SJ (2001) Chem Phys 267:11

    Article  Google Scholar 

  72. Khaneja N, Glaser SJ, Brockett R (2002) Phys Rev A 65:032301

    Article  MathSciNet  Google Scholar 

  73. Warren WS (1997) Science 277:1688

    Article  Google Scholar 

  74. Hübler P, Bargon J, Glaser SJ (2000) J Chem Phys 113:2056

    Article  Google Scholar 

  75. Anwar MS, Jones JA, Blazina D, Duckett SB, Carteret HA (2004) Phys Rev A 70:032324

    Article  Google Scholar 

  76. Anwar MS, Blazina D, Carteret HA, Duckett SB, Jones JA (2004) Chem Phys Lett 400:94

    Article  Google Scholar 

  77. Myers JM, Fahmy AF, Glaser SJ, Marx R (2001) Phys Rev A 63:032302

    Article  Google Scholar 

  78. Pontryagin LS, Boltyanskii V, Gamkrelidze R, Meshecenko E (1962) The Mathematical Theory of Optimal Processes. Interscience, New York

    MATH  Google Scholar 

  79. Reiss TO, Khaneja N, Glaser SJ (2002) J Magn Reson 154:192

    Article  Google Scholar 

  80. Reiss TO, Khaneja N, Glaser SJ (2003) J Magn Reson 165:95

    Article  Google Scholar 

  81. Khaneja N, Kramer F, Glaser SJ (2005) J Magn Reson 173:116

    Article  Google Scholar 

  82. Tseng CH, Somaroo S, Sharf Y, Knill E, Laflamme R, Havel TF, Cory DG (2000) Phys Rev A 61:012302

    Article  Google Scholar 

  83. Sorensen OW (1989) Prog NMR Spectrosc 21:503

    Article  MathSciNet  Google Scholar 

  84. Meissner A, Sorensen OW (1997) Chem Phys Lett 276:97

    Article  Google Scholar 

  85. Ladd TD, Goldman RJ, Yamaguchi F, Yamamoto Y, Abe E, Itoh KM (2002) Phys Rev Lett 89:017901

    Article  Google Scholar 

  86. Khaneja N, Glaser SJ (2002) Phys Rev A 66:060301

    Article  MathSciNet  Google Scholar 

  87. Khaneja N, Reiss T, Luy B, Glaser SJ (2003) J Magn Reson 162:311

    Article  Google Scholar 

  88. Khaneja N, Luy B, Glaser SJ (2003) Proc Nat Acad Sci USA 100:13162

    Article  MATH  MathSciNet  Google Scholar 

  89. Stefanatos D, Khaneja N, Glaser SJ (2004) Optimal Control of Coupled Spins in Presence of Longitudinal Relaxation. Phys Rev A 69:022319

    Article  Google Scholar 

  90. Khaneja N, Li J-S, Kehlet C, Luy B, Glaser SJ (2004) Proc Nat Acad Sci USA 101:14742

    Article  Google Scholar 

  91. Stefanatos D, Khaneja N, Glaser SJ (2005) Phys Rev A 72:062320

    Article  Google Scholar 

  92. Vold RR, Vold RL (1978) Prog NMR Spectrosc 12:79

    Article  Google Scholar 

  93. Goldman M (1984) J Magn Reson 60:437

    Google Scholar 

  94. Kumar A, Grace RCR, Madhu PK (2000) Prog NMR Spectrosc 37:191

    Article  Google Scholar 

  95. Wüthrich K (1998) Nat Struct Biol 5:492

    Article  Google Scholar 

  96. Riek R, Wider G, Pervushin K, Wüthrich K (1999) Proc Nat Acad Sci USA 96:4918

    Article  Google Scholar 

  97. Brüschweiler R, Ernst RR (1992) Chem Phys 96:1758

    Article  Google Scholar 

  98. Früh DP, Ito T, Li J-S, Wagner G, Glaser SJ, Khaneja N (2005) J Biomol NMR 32:23

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen J. Glaser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glaser, S.J., Schulte-Herbrüggen, T. & Khaneja, N. Non-computing applications of quantum information in NMR . Informatik Forsch. Entw. 21, 65–71 (2006). https://doi.org/10.1007/s00450-006-0014-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00450-006-0014-9

Keywords

Navigation