Skip to main content
Log in

Analysis of Randomized Protocols for Conflict-Free Distributed Access

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We study the following distributed access problem which arises naturally in many settings: given a set of n data items shared among n nodes in a distributed network, all nodes want to access all (or a subset of) the items residing on different nodes in a conflict-free manner. In addition, items may move from one node to the other during access. Our goal is to design distributed protocols so that all nodes access all the desired items as quickly as possible, while at the same time not overloading the storage space of any one node. Using centralized coordination among the nodes it is easy to design an optimal scheme in which all nodes can access all the items in n−1 steps storing only one item at any time. We show that a simple randomized distributed protocol performs almost as well as the optimal (centralized) scheme but with no coordination overhead. Our protocol takes O(n) time with high probability to access all n items which is asymptotically as good as the optimal centralized scheme. The protocol guarantees that the maximum load (the maximum number of items stored in any node) at any time is at most O(log n/log log n) with high probability which is only slightly larger compared to the Ω(1) load of the optimal scheme. Our analysis involves a stochastic analysis of a “balls into bins” problem in a dynamic setting where balls (data items) move into bins (nodes) on request and we study the time and load requirements to move all the balls to the requested bins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angluin, D., Valiant, L.: Fast probabilistic algorithms for Hamiltonian circuits and matchings. J. Comput. Syst. Sci. 18, 155–193 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  2. Azar, Y., Broder, A., Karlin, A., Upfal, E.: Balanced allocations. SIAM J. Comput. 29, 180–200 (2000)

    Article  MathSciNet  Google Scholar 

  3. Dilman, M., Raz, D.: Efficient reactive monitoring. IEEE J. Sel. Areas Commun. 20, 668–676 (2002)

    Article  Google Scholar 

  4. Dubhashi, D., Ranjan, D.: Balls and bins: a study in negative dependence. Random Struct. Algorithms 13(2), 99–124 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Feige, U., Peleg, D., Raghavan, P., Upfal, E.: Randomized broadcast in networks. Random Struct. Algorithms 1, 447–460 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gallager, R.: A perspective on multiaccess channels. IEEE Trans. Inf. Theory 31(2), 124–142 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  7. Goldberg, L., Mackenzie, P., Paterson, M., Srinivasan, A.: Contention resolution with constant expected delay. J. ACM 47(6), 1048–1096 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Goldberg, L., Jerrum, M., Kannan, S., Paterson, M.: A bound on the capacity of backoff and acknowledgment-based protocols. SIAM J. Comput. 33(2), 313–331 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hastad, J., Leighton, F., Rogoff, B.: Analysis of backoff protocols for multiple access channels. SIAM J. Comput. 25(4), 740–774 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  10. Johnson, N.L., Kotz, S.: Urn Models and their Applications. Wiley, New York (1977)

    Google Scholar 

  11. Jagannathan, S., Pandurangan, G., Srinivasan, S.: Query protocols for highly resilient peer-to-peer networks. In: Proc. of the 19th International Conference on Parallel and Distributed Computing Systems, pp. 247–252 (2006)

  12. Karp, R., Schindelhauer, C., Shenker, S., Vocking, B.: Randomized rumor spreading. In: IEEE Symposium on Foundations of Computer Science, pp. 565–574 (2000)

  13. Kempe, D., Kleinberg, J.: Protocols and impossibility results for gossip-based communication mechanisms. In: Proceedings of The 43rd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 471–480 (2002)

  14. Kempe, D., McSherry, F.: A decentralized algorithm for spectral analysis. In: Proceedings of STOC, pp. 561–568 (2004)

  15. Kempe, D., Kleinberg, J., Demers, A.: Spatial gossip and resource location protocols. In: Proc. of ACM Symposium on Theory of Computing (STOC), pp. 163–172 (2001)

  16. Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate information. In: IEEE FOCS, pp. 482–491 (2003)

  17. Kolchin, V., Chistiakov, V., Sevastianov, B.: Random Allocations. V.H. Winston, New York (1978)

    Google Scholar 

  18. Lotker, Z., Patt-Shamir, B., Pavlov, E., Peleg, D.: Minimum-weight spanning tree construction in O(log log n) communication rounds. SIAM J. Comput. 35(1), 120–131 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  20. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  21. Ozsu, M., Valduriez, P.: Principles of Distributed Database Systems, 2nd edn. Prentice-Hall, Englewood Cliffs (1999)

    Google Scholar 

  22. Panconesi, A., Srinivasan, A.: Randomized distributed edge coloring via an extension of the Chernoff-Hoeffding bounds. SIAM J. Comput. 26, 350–368 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  23. Peleg, D.: Distributed Computing: A Locality Sensitive Approach. SIAM, Philadelphia (2000)

    MATH  Google Scholar 

  24. Rabin, M.: Efficient dispersal of information for security, load balancing, and fault tolerance. J. ACM 36(2), 335–348 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  25. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-addressable network. In: Proceedings of ACM SIGCOMM, pp. 161–172 (2001)

  26. Raghavan, P., Upfal, E.: Stochastic contention resolution with short delays. SIAM J. Comput. 28(2), 709–719 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  27. Srinivasan, A.: Approximation algorithms via randomized rounding: a survey. In: Karonski, M., Promel, H.J. (eds.) Lectures on Approximation and Randomized Algorithms. Series in Advanced Topics in Mathematics, pp. 9–71. Polish Scientific Publishers PWN, Warszawa (1999)

    Google Scholar 

  28. Stoica, I., Morris, R., Karger, D., Kaashoek, M., Balakrishnan, H.: Chord: a scalable peer-to-peer lookup service for Internet applications. In: Proceedings of ACM SIGCOMM, pp. 149–160 (2001)

  29. Szpankowski, W.: Average Case Analysis of Algorithms on Sequences. Wiley, New York (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gopal Pandurangan.

Additional information

A short version of this paper appeared in the Proceedings of the 24th Annual ACM Symposium on Principles of Distributed Computing (PODC), 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandurangan, G., Park, G. Analysis of Randomized Protocols for Conflict-Free Distributed Access. Algorithmica 49, 109–126 (2007). https://doi.org/10.1007/s00453-007-9027-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-007-9027-4

Keywords

Navigation