Skip to main content
Log in

On the Minimum Feedback Vertex Set Problem: Exact and Enumeration Algorithms

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We present a time \(\mathcal {O}(1.7548^{n})\) algorithm finding a minimum feedback vertex set in an undirected graph on n vertices. We also prove that a graph on n vertices can contain at most 1.8638n minimal feedback vertex sets and that there exist graphs having 105n/10≈1.5926n minimal feedback vertex sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bafna, V., Berman, P., Fujito, T.: A 2-approximation algorithm for the undirected feedback vertex set problem. SIAM J. Discrete Math. 12, 289–297 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bar-Yehuda, R., Geiger, D., Naor, J., Roth, R.M.: Approximation algorithms for the feedback vertex set problem with applications to constraint satisfaction and Bayesian inference. SIAM J. Comput. 27, 942–959 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Björklund, A., Husfeldt, T.: Inclusion-exclusion algorithms for counting set partitions. In: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), pp. 575–582. IEEE Computer Society, Los Alamitos (2006)

    Chapter  Google Scholar 

  4. Brunetta, L., Maffioli, F., Trubian, M.: Solving the feedback vertex set problem on undirected graphs. Discrete Appl. Math. 101, 37–51 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Byskov, J.M.: Enumerating maximal independent sets with applications to graph colouring. Oper. Res. Lett. 32, 547–556 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Byskov, J.M., Madsen, B.A., Skjernaa, B.: On the number of maximal bipartite subgraphs of a graph. J. Graph Theory 48, 127–132 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cai, M.-C., Deng, X., Zang, W.: A min-max theorem on feedback vertex sets. Math. Oper. Res. 27, 361–371 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen, J., Liu, Y., Lu, S.: Directed feedback vertex set problem is FPT. Dagstuhl Seminar Series, Seminar 07281 (2007), available electronically at http://kathrin.dagstuhl.de/files/Materials/07/07281/07281.ChenJianer.Paper.pdf

  9. Chudak, F.A., Goemans, M.X., Hochbaum, D.S., Williamson, D.P.: A primal-dual interpretation of two 2-approximation algorithms for the feedback vertex set problem in undirected graphs. Oper. Res. Lett. 22, 111–118 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dehne, F.K.H.A., Fellows, M.R., Langston, M.A., Rosamond, F.A., Stevens, K.: An O(2O(k) n 3) FPT algorithm for the undirected feedback vertex set problem. In: Proceedings of the 11th Annual International Conference on Computing and Combinatorics (COCOON 2005). Lecture Notes in Comput. Sci., vol. 3595, pp. 859–869. Springer, Berlin (2005)

    Google Scholar 

  11. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York (1999)

    Google Scholar 

  12. Even, G., Naor, J., Schieber, B., Zosin, L.: Approximating minimum subset feedback sets in undirected graphs with applications. SIAM J. Discrete Math. 13, 255–267 (2000)

    Article  MathSciNet  Google Scholar 

  13. Festa, P., Pardalos, P.M., Resende, M.G.C.: Feedback set problems. In: Handbook of Combinatorial Optimization, Supplement vol. A, pp. 209–258. Kluwer Academic, Dordrecht (1999)

    Google Scholar 

  14. Fomin, F.V., Pyatkin, A.V.: Finding minimum feedback vertex set in bipartite graph. Reports in Informatics 291, University of Bergen (2005)

  15. Fomin, F.V., Grandoni, F., Kratsch, D.: Measure and conquer: domination—a case study. In: Proceedings of the 32nd International Colloquium on Automata, Languages and Programming (ICALP 2005). Lecture Notes in Comput. Sci., vol. 3580, pp. 191–203. Springer, Berlin (2005)

    Google Scholar 

  16. Fomin, F.V., Grandoni, F., Kratsch, D.: Some new techniques in design and analysis of exact (exponential) algorithms. Bull. EATCS 87, 47–77 (2005)

    MathSciNet  Google Scholar 

  17. Fomin, F.V., Grandoni, F., Pyatkin, A.V., Stepanov, A.: Bounding the number of minimal dominating sets: a measure and conquer approach. In: Proceedings of the 16th Annual International Symposium on Algorithms and Computation (ISAAC 2005). Lecture Notes in Comput. Sci., vol. 3827, pp. 573–582. Springer, Berlin (2005)

    Google Scholar 

  18. Fomin, F.V., Gaspers, S., Pyatkin, A.V.: Finding a minimum feedback vertex set in time O(1.7548n). In: Proceedings of the 2nd International Workshop on Parameterized and Exact Computation (IWPEC 2006). Lecture Notes in Comput. Sci., vol. 4169, pp. 184–191. Springer, Berlin (2006)

    Chapter  Google Scholar 

  19. Fomin, F.V., Grandoni, F., Kratsch, D.: Measure and conquer: a simple O(20.288 n) independent set algorithm. In: 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2006), pp. 18–25. ACM and SIAM, New York (2006)

    Chapter  Google Scholar 

  20. Funke, M., Reinelt, G.: A polyhedral approach to the feedback vertex set problem. In: Integer Programming and Combinatorial Optimization. Lecture Notes in Comput. Sci., vol. 1084, pp. 445–459. Springer, Berlin (1996)

    Google Scholar 

  21. Guo, J., Niedermeier, R., Wernicke, S.: Parameterized complexity of generalized vertex cover problems. In: Proceedings of the 9th International Workshop on Algorithms and Data Structures (WADS 2005). Lecture Notes in Comput. Sci., vol. 3608, pp. 36–48. Springer, Berlin (2005)

    Google Scholar 

  22. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations, pp. 85–103. Plenum, New York (1972)

    Google Scholar 

  23. Kleinberg, J., Kumar, A.: Wavelength conversion in optical networks. J. Algorithms 38, 25–50 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Koivisto, M.: An O(2n) algorithm for graph coloring and other partitioning problems via inclusion-exclusion. In: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), pp. 583–590. IEEE Computer Society, Los Alamitos (2006)

    Chapter  Google Scholar 

  25. Moon, J.W., Moser, L.: On cliques in graphs. Isr. J. Math. 3, 23–28 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  26. Pardalos, P.M., Qian, T., Resende, M.G.C.: A greedy randomized adaptive search procedure for the feedback vertex set problem. J. Comb. Optim. 2, 399–412 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  27. Raman, V., Saurabh, S., Sikdar, S.: Improved exact exponential algorithms for vertex bipartization and other problems. In: Proceedings of the 9th Italian Conference on Theoretical Computer Science (ICTCS 2005). Lecture Notes in Comput. Sci., vol. 3701, pp. 375–389. Springer, Berlin (2005)

    Google Scholar 

  28. Raman, V., Saurabh, S., Subramanian, C.R.: Faster fixed parameter tractable algorithms for undirected feedback vertex set. In: Proceedings of the 13th International Symposium on Algorithms and Computation (ISAAC 2002). Lecture Notes in Comput. Sci., vol. 2518, pp. 241–248. Springer, Berlin (2002)

    Google Scholar 

  29. Razgon, I.: Exact computation of maximum induced forest. In: Proceedings of the 10th Scandinavian Workshop on Algorithm Theory (SWAT 2006). Lecture Notes in Comput. Sci., pp. 160–171. Springer, Berlin (2006)

    Google Scholar 

  30. Razgon, I.: Directed feedback vertex set is fixed-parameter tractable. Dagstuhl Seminar Series, Seminar 07281 (2007), available electronically at http://kathrin.dagstuhl.de/files/Submissions/07/07281/07281.RazgonIgor.Paper!.pdf

  31. Robson, J.M.: Algorithms for maximum independent sets. J. Algorithms 7, 425–440 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  32. Schwikowski, B., Speckenmeyer, E.: On enumerating all minimal solutions of feedback problems. Discrete Appl. Math. 117, 253–265 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  33. Woeginger, G.: Exact algorithms for NP-hard problems: a survey. In: Combinatorial Optimization—Eureka, You Shrink!. Lecture Notes in Comput. Sci., vol. 2570, pp. 185–207. Springer, Berlin (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Gaspers.

Additional information

Preliminary extended abstracts of this paper appeared in the proceedings of SWAT’06 [29] and IWPEC’06 [18].

Additional support of F.V. Fomin, S. Gaspers and A.V. Pyatkin by the Research Council of Norway.

The work of A.V. Pyatkin was partially supported by grants of the Russian Foundation for Basic Research (project code 05-01-00395), INTAS (project code 04–77–7173).

I. Razgon is supported by Science Foundation Ireland (Grant Number 05/IN/I886).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fomin, F.V., Gaspers, S., Pyatkin, A.V. et al. On the Minimum Feedback Vertex Set Problem: Exact and Enumeration Algorithms. Algorithmica 52, 293–307 (2008). https://doi.org/10.1007/s00453-007-9152-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-007-9152-0

Keywords

Navigation