Skip to main content
Log in

Algorithms to Separate \(\{0,\frac{1}{2}\}\) -Chvátal-Gomory Cuts

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Chvátal-Gomory cuts are among the most well-known classes of cutting planes for general integer linear programs (ILPs). In case the constraint multipliers are either 0 or \(\frac {1}{2}\) , such cuts are known as \(\{0,\frac {1}{2}\}\) -cuts. It has been proven by Caprara and Fischetti (Math. Program. 74:221–235, 1996) that separation of \(\{0,\frac {1}{2}\}\) -cuts is \(\mathcal {NP}\) -hard.

In this paper, we study ways to separate \(\{0,\frac {1}{2}\}\) -cuts effectively in practice. We propose a range of preprocessing rules to reduce the size of the separation problem. The core of the preprocessing builds a Gaussian elimination-like procedure. To separate the most violated \(\{0,\frac {1}{2}\}\) -cut, we formulate the (reduced) problem as integer linear program. Some simple heuristic separation routines complete the algorithmic framework.

Computational experiments on benchmark instances show that the combination of preprocessing with exact and/or heuristic separation is a very vital idea to generate strong generic cutting planes for integer linear programs and to reduce the overall computation times of state-of-the-art ILP-solvers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achterberg, T.: SCIP—a framework to integrate constraint and mixed integer programming. ZIB-Report 04–19, Zuse Institute Berlin (2004). http://www.zib.de/Publications/abstracts/ZR-04-19/

  2. Achterberg, T., Berthold, T., Koch, T., Martin, A., Wolter, K.: SCIP (Solving Constraint Integer Programs) (2006). http://scip.zib.de/

  3. Achterberg, T., Koch, T., Martin, A.: MIPLIB (2003). http://miplib.zib.de

  4. Achterberg, T., Wunderling, R.: Private communication, November 2007

  5. Andreello, G., Caprara, A., Fischetti, M.: Embedding \(\{0,\frac{1}{2}\}\) -cuts in a branch-and-cut framework: A computational study. INFORMS J. Comput. 19(2), 229–238 (2007)

    Article  MathSciNet  Google Scholar 

  6. Bixby, R., Reinelt, G.: TSPLIB. http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html

  7. Bixby, R.E., Ceria, S., McZeal, C.M., Savelsbergh, M.W.P.: MIPLIB 3.0. http://www.caam.rice.edu/~bixby/miplib/miplib.html

  8. Bonami, P., Cornuéjols, G., Dash, S., Fischetti, M., Lodi, A.: Projected Chvátal–Gomory cuts for mixed integer linear programs. Math. Program. A 113, 241–257 (2008)

    Article  MATH  Google Scholar 

  9. Caprara, A., Fischetti, M.: {0,1/2}-Chvátal-Gomory cuts. Math. Program. 74, 221–235 (1996)

    MathSciNet  Google Scholar 

  10. Caprara, A., Fischetti, M.: Odd cut-sets, odd cycles, and 0–1/2 Chvátal-Gomory cuts. Ric. Oper. 26, 51–80 (1996)

    Google Scholar 

  11. Caprara, A., Fischetti, M., Letchford, A.N.: On the separation of maximally violated mod-k cuts. Math. Program. 87, 37–56 (2000)

    MATH  MathSciNet  Google Scholar 

  12. Chvátal, V.: Edmonds polytopes and a hierarchy of combinatorial problems. Discrete Math. 4, 305–337 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  13. Edmonds, J., Johnson, E.L.: Matching: a well-solved class of integer linear programs. In: Guy, R.K., Hanani, H. (eds.) Combinatorial Structures and Their Applications, pp. 80–92. Gordon and Breach, New York (1970)

    Google Scholar 

  14. Fiorini, S.: \(\{0,\frac{1}{2}\}\) -cuts and the linear ordering problem: Surfaces that define facets. SIAM J. Discrete Math. 20(4), 893–912 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fischetti, M., Lodi, A.: Optimizing over the first Chvátal closure. Math. Program. 110(1), 3–20 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gentile, C., Ventura, P., Weismantel, R.: Mod-2 cuts generation yields the convex hull of bounded integer feasible sets. SIAM J. Discrete Math. 20(4), 913–919 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gomory, R.E.: Outline of an algorithm for integer solutions to linear programs. Bull. Am. Math. Soc. 64, 275–278 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gomory, R.E.: An algorithm for integer solutions to linear programs. In: Graves, R.L., Wolfe, P. (eds.) Recent Advances in Mathematical Programming, pp. 269–302. McGraw-Hill, New York (1963)

    Google Scholar 

  19. ILOG. CPLEX version 10.0 (2006). http://www.ilog.com/products/cplex

  20. Koster, A.M.C.A., Zymolka, A.: Stable multi-sets. Math. Methods Oper. Res. 56(1), 45–65 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Koster, A.M.C.A., Zymolka, A.: On cycles and the stable multi-set polytope. Discrete Optim. 2(3), 241–255 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Padberg, M.: On the facial structure of set packing polyhedra. Math. Program. 5, 199–215 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  23. Schrijver, A.: On cutting planes. Ann. Discrete Math. 9, 291–296 (1980)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arie M. C. A. Koster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koster, A.M.C.A., Zymolka, A. & Kutschka, M. Algorithms to Separate \(\{0,\frac{1}{2}\}\) -Chvátal-Gomory Cuts. Algorithmica 55, 375–391 (2009). https://doi.org/10.1007/s00453-008-9218-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-008-9218-7

Keywords

Navigation