Skip to main content
Log in

Stability in the Self-Organized Evolution of Networks

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

The modeling and analysis of large networks of autonomous agents is an important topic with applications in many different disciplines. One way of modeling the development of such networks is by means of an evolutionary process. The autonomous and selfishly acting agents are randomly chosen to become active according to an underlying probability distribution. They may apply some kind of local mutation operator to the network and decide about accepting these changes via some fitness-based selection whereas the fitness models the agent’s preferences. This general framework for the self-organized evolution of networks can be instantiated in many different ways. For interesting instances, one would like to know whether stable topologies eventually evolve and how long this process may take. Here, known results for an instantiation based on random spanning trees and a fitness-based selection according to global graph centrality measures are improved. Moreover, a more natural and local fitness-based selection using only the information on nearest neighbors is presented and analyzed with respect to the expected time needed to reach a stable state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agnarsson, G., Deo, N., Micikevicis, P.: On the expected number of level-i-nodes in a random labeled tree. Bull. ICA 41, 51–60 (2004)

    MATH  Google Scholar 

  2. Anshelevich, E., Dasgupta, A., Tardos, E., Wexler, T.: Near-optimal network design with selfish agents. In: ACM Symposium on Theory of Computing (STOC’03), pp. 511–520 (2003)

  3. Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, E., Wexler, T., Roughgarden, T.: The price of stability for network design with fair cost allocation. In: IEEE Symposium on Foundations of Computer Science (FOCS’04) (2004)

  4. Bala, V., Goyal, S.: A noncooperative model of network formation. Econometrica 68, 1181–1230 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brémaud, P.: Markov Chains, Gibbs Fields, Monte Carlo Simulation, and Queues. Springer, Berlin (1998)

    Google Scholar 

  6. Entringer, R.C., Meir, A., Moon, J.W., Székely, L.: On the wiender index of trees from certain families. Australas. J. Combin. 10, 211–224 (1994)

    MATH  MathSciNet  Google Scholar 

  7. Fabrikant, A., Luthra, A., Maneva, E., Papadimitriou, C.: On a network creation game. In: Symposium on Principles of Distributed Computing (PODC’03), pp. 347–351 (2003)

  8. Fischermann, M., Hoffmann, A., Rautenbach, D., Szekely, L., Volkmann, L.: Wiener index versus maximum degree in trees. Discrete Appl. Math. 122, 127–137 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Garnier, J., Kallel, L., Schoenauer, M.: Rigorous hitting times for binary mutations. Evol. Comput. 7(2), 173–203 (1999)

    Article  Google Scholar 

  10. Jansen, T., Theile, M.: Stability in the self-organized evolution of networks. In: Lipson, H. (ed.) Conference on Genetic and Evolutionary Computation (GECCO’07), pp. 931–938. Assoc. Comput. Mach., New York (2007)

    Chapter  Google Scholar 

  11. Janson, S.: The wiener index of simply generated random trees. Random Struct. Algorithms 22(4), 337–358 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Jordan, M.E.C.: Sur les assemblages des lignes. J. Reine Angew. Math. 70, 185–190 (1869)

    Google Scholar 

  13. Lehmann, K., Kaufmann, M.: Evolutionary algorithms for the self-organized evolution of networks. In: Conference on Genetic and Evolutionary Computation (GECCO’05), pp. 563–570 (2005)

  14. Luczak, T.: The height of a random tree. Technical report, Adam Mickiewicz University (1993)

  15. Mitzenmacher, M., Upfal, E.: Probability and Computing. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  16. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  17. Papadimitriou, C.H.: Algorithms, games, and the Internet. In: ACM Symposium on Theory of Computing (STOC’01). Lecture Notes in Computer Science, vol. 2076, pp. 1–5. Springer, Berlin (2001)

    Google Scholar 

  18. Prüfer, H.: Neuer Beweis eines Satzes über Permutationen. Archiv für Mathematik und Physik, pp. 142–144 (1918)

  19. Renyi, A., Szekeres, G.: On the height of trees. J. Aust. Math. Soc. 7, 497–507 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  20. Rojas, R.: Neural Networks. Springer, Berlin (1996)

    MATH  Google Scholar 

  21. Williams, D.: Probability with Martingales. Cambridge Mathematical Textbooks (1991)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madeleine Theile.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Theile, M., Jansen, T. Stability in the Self-Organized Evolution of Networks. Algorithmica 57, 147–169 (2010). https://doi.org/10.1007/s00453-008-9242-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-008-9242-7

Keywords

Navigation