Skip to main content
Log in

Derandomized Constructions of k-Wise (Almost) Independent Permutations

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Constructions of k-wise almost independent permutations have been receiving a growing amount of attention in recent years. However, unlike the case of k-wise independent functions, the size of previously constructed families of such permutations is far from optimal. This paper gives a new method for reducing the size of families given by previous constructions. Our method relies on pseudorandom generators for space-bounded computations. In fact, all we need is a generator, that produces “pseudorandom walks” on undirected graphs with a consistent labelling. One such generator is implied by Reingold’s log-space algorithm for undirected connectivity (Reingold/Reingold et al. in Proc. of the 37th/38th Annual Symposium on Theory of Computing, pp. 376–385/457–466, 2005/2006). We obtain families of k-wise almost independent permutations, with an optimal description length, up to a constant factor. More precisely, if the distance from uniform for any k tuple should be at most δ, then the size of the description of a permutation in the family is \(O(kn+\log \frac{1}{\delta})\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldous, D., Diaconis, P.: Shuffling cards and stopping times. Am. Math. Mon. 93, 333–348 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aldous, D., Fill, J.A.: Reversible Markov chains and random walks on graphs. http://www.stat.berkeley.edu/users/aldous/RWG/book.html

  3. Alon, N., Spencer, J.: The Probabilistic Method. Wiley, New York (1992)

    MATH  Google Scholar 

  4. Azar, Y., Motwani, R., Naor, J.: Approximating probability distributions using small sample spaces. Combinatorica 18(2), 151–171 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bar-Noy, A., Naor, J., Schieber, B.: Pushing dependent data in clients-providers-servers systems. Wirel. Netw. 9(5), 421–430 (2003)

    Article  Google Scholar 

  6. Black, J., Rogaway, P.: Ciphers with arbitrary finite domains. In: Topics in Cryptology—CT-RSA 2002. Lecture Notes in Computer Science, vol. 2271, pp. 114–130. Springer, Berlin (2002)

    Chapter  Google Scholar 

  7. Broder, A.Z., Charikar, M., Frieze, A.M., Mitzenmacher, M.: Min-wise independent permutations. J. Comput. Syst. Sci. 60(3), 630–659 (2000) (preliminary version STOC 2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Broder, A.Z., Glassman, S.C., Manasse, M.S., Zweig, G.: Syntactic clustering of the Web. Comput. Netw. 29, 1157–1166 (1997)

    Article  Google Scholar 

  9. Brodsky, A., Hoory, S.: Simple permutations mix even better. Random Struct. Algorithms 32(3), 274–289 (2007). Arxiv:math.CO/0411098

    Article  MathSciNet  Google Scholar 

  10. Cameron, P.J.: Finite permutation groups and finite simple groups. Bull. Lond. Math. Soc. 13, 1–22 (1981)

    Article  MATH  Google Scholar 

  11. Dietzfelbinger, M., Woelfel, P.: Almost random graphs with simple hash functions. In: Proc. of the 35th Annual ACM Symposium on Theory of Computing, pp. 629–638 (2003)

  12. Gilbert, A.C., Guha, S., Indyk, P., Kotidis, Y., Muthukrishnan, S., Strauss, M.: Fast, small-space algorithms for approximate histogram maintenance. In: Proc. of the 34th Annual ACM Symposium on Theory of Computing, pp. 389–398 (2002)

  13. Goldreich, O., Goldwasser, S., Nussboim, A.: On the implementation of huge random objects. In: Proc. of the 44th Annual IEEE Symposium on Foundations of Computer Science, pp. 68–79 (2003)

  14. Gowers, W.T.: An almost m-wise independent random permutation of the cube. Comb. Probab. Comput. 5(2), 119–130 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hoory, S., Magen, A., Myers, S., Rackoff, C.: Simple permutations mix well. In: The 31st International Colloquium on Automata, Languages and Programming (ICALP). Lecture Notes in Computer Science, vol. 3142, pp. 770–781. Springer, Berlin (2004)

    Google Scholar 

  16. Indyk, P.: Stable distributions, pseudorandom generators, embeddings and data stream computation. In: Proc. of the 41st Annual IEEE Symposium on Foundations of Computer Science, pp. 189–197 (2000)

  17. Itoh, T., Takei, Y., Tarui, J.: On permutations with limited independence. In: Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 137–146 (2000)

  18. Itoh, T., Takei, Y., Tarui, J.: On the sample size of k-restricted min-wise independent permutations and other k-wise distributions. In: Proc. of the 35th Annual ACM Symposium on Theory of Computing, pp. 710–719 (2003)

  19. Kaplan, E., Naor, M., Reingold, O.: Derandomized constructions of k-wise (almost) independent permutations. In: The 9th International Workshop on Randomization and Computation (RANDOM). Lecture Notes in Computer Science, vol. 3624, pp. 354–365. Springer, Berlin (2005)

    Google Scholar 

  20. Kassabov, M.: Symmetric groups and expanders. arXiv:math.GR/0503204

  21. Koller, D., Megiddo, N.: Constructing small sample spaces satisfying given constraints. SIAM J. Discrete Math. 7(2), 260–274 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  22. Luby, M., Rackoff, C.: How to construct pseudorandom permutations and pseudorandom functions. SIAM J. Comput. 17, 373–386 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  23. Maurer, U.M., Pietrzak, K.: The security of many-round Luby–Rackoff pseudo-random permutations. In: Advances in Cryptology—EUROCRPYT ’2003. Lecture Notes in Computer Science, vol. 2656, pp. 544–561. Springer, Berlin (2003)

    Google Scholar 

  24. Maurer, U.M., Pietrzak, K.: Composition of random systems: when two weak make one strong. In: First Theory of Cryptography Conference, TCC 2004. Lecture Notes in Computer Science, vol. 2951, pp. 410–427. Springer, Berlin (2004)

    Google Scholar 

  25. Morris, B.: On the mixing time for the Thorp shuffle. In: Proc. of the 37th Annual ACM Symposium on Theory of Computing, pp. 403–412 (2005)

  26. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, New York (1995)

    MATH  Google Scholar 

  27. Myers, S.: Black-box composition does not imply adaptive security. In: Advances in Cryptology—EUROCRYPT ’2004. Lecture Notes in Computer Science, vol. 3027, pp. 189–203. Springer, Berlin (2004)

    Google Scholar 

  28. Naor, M., Reingold, O.: On the construction of pseudorandom permutations: Luby–Rackoff revisited. J. Cryptol. 12(1), 29–66 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  29. Nisan, N.: Pseudorandom generators for space-bounded computation. Combinatorica 12(4), 449–461 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  30. Nisan, N., Zuckerman, D.: Randomness is linear in space. J. Comput. Syst. Sci. 52(1), 43–52 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  31. Ostlin, A., Pagh, R.: Uniform hashing in constant time and linear space. In: Proc. of the 35th Annual ACM Symposium on Theory of Computing, pp. 622–628 (2003)

  32. Patarin, J.: Improved security bounds for pseudorandom permutations. In: Proc. of the 4th ACM Conference on Computer and Communications Security, pp. 142–150 (1997)

  33. Patarin, J.: Luby–Rackoff: 7 rounds are enough for 2n(1−ε) security. In: Advances in Cryptology—CRYPTO 2003. Lecture Notes in Computer Science, vol. 2729, pp. 513–529. Springer, Berlin (2003)

    Google Scholar 

  34. Patarin, J.: Security of random Feistel schemes with 5 or more rounds. In: Advances in Cryptology—CRYPTO ’2004. Lecture Notes in Computer Science, vol. 3152, pp. 106–122. Springer, Berlin (2004)

    Google Scholar 

  35. Pietrzak, K.: Composition does not imply adaptive security. In: Advances in Cryptology—CRYPTO ’2005. Lecture Notes in Computer Science, vol. 3621, pp. 55–65. Springer, Berlin (2005)

    Google Scholar 

  36. Pinkas, B.: Communication preserving cryptographic protocols. Ph.D. dissertation, Weizmann Institute of Science (1999)

  37. Reingold, O.: Undirected ST-connectivity in log-space. In: Proc. of the 37th Annual ACM Symposium on Theory of Computing, pp. 376–385 (2005)

  38. Reingold, O., Trevisan, L., Vadhan, S.: Pseudorandom walks in biregular graphs and the RL vs. L problem. In: Proc. of the 38th Annual ACM Symposium on Theory of Computing, pp. 457–466 (2006)

  39. Robinson, D.J.S.: A Course in the Theory of Groups, 2nd edn. Springer, New York (1996)

    Google Scholar 

  40. Rozenman, E., Vadhan, S.: Derandomized squaring of graphs. In: The 9th International Workshop on Randomization and Computation (RANDOM). Lecture Notes in Computer Science, vol. 3624, pp. 436–447. Springer, Berlin (2005)

    Google Scholar 

  41. Rudich, S.: Limits on the provable consequences of one-way functions. Ph.D. thesis, U.C. Berkeley (1988)

  42. Russell, A., Wang, H.: How to fool an unbounded adversary with a short key. In: Advances in Cryptology—EUROCRYPT ’2002. Lecture Notes in Computer Science, vol. 2332, pp. 133–148. Springer, Berlin (2002)

    Google Scholar 

  43. Saks, M., Srinivasan, A., Zhou, S., Zuckerman, D.: Low discrepancy sets yield approximate min-wise independent permutation families. Inf. Process. Lett. 73, 29–32 (2000)

    Article  MathSciNet  Google Scholar 

  44. Siegel, A.: On universal classes of extremely random constant-time hash functions. SIAM J. Comput. 33(3), 505–543 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  45. Sinclair, A.: Improved bounds for mixing rates of Markov chains and multicommodity flow. Comb. Probab. Comput. 1(4), 351–370 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  46. Sivakumar, D.: Algorithmic derandomization via complexity theory. In: Proc. of the 34th Annual ACM Symposium on Theory of Computing, pp. 619–626 (2002)

  47. Thorp, E.: Nonrandom shuffling with applications to the game of Faro. J. Am. Stat. Assoc. 68, 842–847 (1973)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omer Reingold.

Additional information

A preliminary version of this paper appeared in Random 2005 [19].

The research of M. Naor was supported in part by a grant from the Israel Science Foundation. The research of O. Reingold was supported by US–Israel Binational Science Foundation Grants 2002246 and 2006060.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaplan, E., Naor, M. & Reingold, O. Derandomized Constructions of k-Wise (Almost) Independent Permutations. Algorithmica 55, 113–133 (2009). https://doi.org/10.1007/s00453-008-9267-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-008-9267-y

Keywords

Navigation