Skip to main content
Log in

Approximation Algorithms and Hardness Results for Packing Element-Disjoint Steiner Trees in Planar Graphs

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We study the problem of packing element-disjoint Steiner trees in graphs. We are given a graph and a designated subset of terminal nodes, and the goal is to find a maximum cardinality set of element-disjoint trees such that each tree contains every terminal node. An element means a non-terminal node or an edge. (Thus, each non-terminal node and each edge must be in at most one of the trees.) We show that the problem is APX-hard when there are only three terminal nodes, thus answering an open question.

Our main focus is on the special case when the graph is planar. We show that the problem of finding two element-disjoint Steiner trees in a planar graph is NP-hard. Similarly, the problem of finding two edge-disjoint Steiner trees in a planar graph is NP-hard. We design an algorithm for planar graphs that achieves an approximation guarantee close to 2. In fact, given a planar graph that is k element-connected on the terminals (k is an upper bound on the number of element-disjoint Steiner trees), the algorithm returns \(\lfloor\frac{k}{2} \rfloor-1\) element-disjoint Steiner trees. Using this algorithm, we get an approximation algorithm for the edge-disjoint version of the problem on planar graphs that improves on the previous approximation guarantees. We also show that the natural LP relaxation of the planar problem has an integrality ratio approaching 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Calinescu, G., Chekuri, C., Vondrak, J.: Disjoint bases in a polymatroid. Random Struct. Algorithms 35(4), 418–430 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chekuri, C., Korula, N.: A graph reduction step preserving element-connectivity and applications. In: Proceedings 36th ICALP. LNCS, vol. 5555, pp. 254–265. Springer, Berlin (2009)

    Google Scholar 

  3. Cheriyan, J., Salavatipour, M.R.: Hardness and approximation results for packing Steiner trees. Algorithmica 45(1), 21–43 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cheriyan, J., Salavatipour, M.R.: Packing element-disjoint Steiner trees. ACM Trans. Algorithms 3(4) (2007)

  5. Demaine, E.D., Hajiaghayi, M.T., Klein, P.N.: Node-weighted Steiner tree and group Steiner tree in planar graphs. In: Proceedings 36th ICALP. LNCS, vol. 5555, pp. 328–340. Springer, Berlin (2009)

    Google Scholar 

  6. Edmonds, J.: Minimum partition of a matroid into independent subsets. J. Res. Natl. Bur. Stand. B 69, 67–72 (1965)

    MathSciNet  MATH  Google Scholar 

  7. Floréen, P., Kaski, P., Kohonen, J., Orponen, P.: Lifetime maximization for multicasting in energy-constrained wireless networks. IEEE J. Sel. Areas Commun. 23(1), 117–126 (2005)

    Article  Google Scholar 

  8. Frank, A., Király, T., Kriesell, M.: On decomposing a hypergraph into k connected sub-hypergraphs. Discrete Appl. Math. 131(2), 373–383 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979)

    MATH  Google Scholar 

  10. Grötschel, M., Martin, A., Weismantel, R.: Packing Steiner trees: a cutting plane algorithm and computational results. Math. Program. 72(2), 125–145 (1996)

    Article  MATH  Google Scholar 

  11. Grötschel, M., Martin, A., Weismantel, R.: Packing Steiner trees: further facets. Eur. J. Comb. 17(1), 39–52 (1996)

    Article  MATH  Google Scholar 

  12. Grötschel, M., Martin, A., Weismantel, R.: Packing Steiner trees: polyhedral investigations. Math. Program., Ser. A 72(2), 101–123 (1996)

    Article  MATH  Google Scholar 

  13. Grötschel, M., Martin, A., Weismantel, R.: Packing Steiner trees: Separation algorithms. SIAM J. Discrete Math. 9(2), 233–257 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Grötschel, M., Martin, A., Weismantel, R.: The Steiner tree packing problem in VLSI design. Math. Program. 78(2), 265–281 (1997)

    Article  MATH  Google Scholar 

  15. Guruswami, V., Khanna, S., Rajaraman, R., Shepherd, B., Yannakakis, M.: Near-optimal hardness results and approximation algorithms for edge-disjoint paths and related problems. Sov. J. Comput. Syst. Sci. 67(3), 473–496 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hind, H.R., Oellermann, O.: Menger-type results for three or more vertices. Congr. Numer. 113, 179–204 (1996)

    MathSciNet  MATH  Google Scholar 

  17. Jain, K., Mahdian, M., Salavatipour, M.R.: Packing Steiner trees. In: ACM-SIAM SODA, pp. 266–274 (2003)

    Google Scholar 

  18. Kann, V.: Maximum bounded 3-dimensional matching is MAX SNP-complete. Inf. Process. Lett. 37(1), 27–35 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kaski, P.: Packing Steiner trees with identical terminal sets. Inf. Process. Lett. 91(1), 1–5 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Korte, B., Prömel, H.J., Steger, A.: Steiner trees in VLSI-layout. In: Korte, B., Lovász, L., Prömel, H.J., Schrijver, A. (eds.) Paths, Flows, and VLSI-Layout, pp. 185–214. Springer, Berlin (1990)

    Google Scholar 

  21. Kostochka, A.V.: Lower bound of the Hadwiger number of graphs by their average degree. Combinatorica 4(4), 307–316 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lau, L.C.: On approximate min-max theorems for graph connectivity problems. PhD thesis, University of Toronto (2006)

  23. Lau, L.C.: An approximate max-Steiner-tree-packing min-Steiner-cut theorem. Combinatorica 27(1), 71–90 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Martin, A., Weismantel, R.: Packing paths and Steiner trees: routing of electronic circuits. CWI Q. 6, 185–204 (1993)

    MathSciNet  MATH  Google Scholar 

  25. Middendorf, M., Pfeiffer, F.: On the complexity of the disjoint paths problem. Combinatorica 13(1), 97–107 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nash-Williams, C.S.J.A.: Edge-disjoint spanning trees of finite graphs. J. Lond. Math. Soc. 36, 445–450 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  27. Naves, G.: The hardness of routing two pairs on one face. Mathematical Programming, 1–21 (2010)

  28. Naves, G., Sebő, A.: Multiflow feasibility: an annotated tableau. In: Research Trends in Combinatorial Optimization, pp. 261–283. Springer, Berlin (2008)

    Google Scholar 

  29. Plesník, J.: The NP-completeness of the Hamiltonian cycle problem in planar digraphs with degree bound two. Inf. Process. Lett. 8(4), 199–201 (1979)

    Article  MATH  Google Scholar 

  30. Thomason, A.: An extremal function for contractions of graphs. Math. Proc. Camb. Philos. Soc. 95, 261–265 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tutte, W.T.: On the problem of decomposing a graph into n connected factors. J. Lond. Math. Soc. 36, 221–230 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wagner, D.: Simple algorithms for Steiner trees and paths packing problems in planar graphs. CWI Q. 6(3), 219–240 (1993)

    MATH  Google Scholar 

  33. West, D.B., Wu, H.: Packing of Steiner trees and S-connectors in graphs. To appear in J. Combin. Theory B (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Cheriyan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aazami, A., Cheriyan, J. & Jampani, K.R. Approximation Algorithms and Hardness Results for Packing Element-Disjoint Steiner Trees in Planar Graphs. Algorithmica 63, 425–456 (2012). https://doi.org/10.1007/s00453-011-9540-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-011-9540-3

Keywords

Navigation