Skip to main content
Log in

Exact Algorithms for the Bottleneck Steiner Tree Problem

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Given n points, called terminals, in the plane ℝ2 and a positive integer k, the bottleneck Steiner tree problem is to find k Steiner points from ℝ2 and a spanning tree on the n+k points that minimizes its longest edge length. Edge length is measured by an underlying distance function on ℝ2, usually, the Euclidean or the L 1 metric. This problem is known to be NP-hard. In this paper, we study this problem in the L p metric for any 1≤p≤∞, and aim to find an exact algorithm which is efficient for small fixed k. We present the first fixed-parameter tractable algorithm running in f(k)⋅nlog 2 n time for the L 1 and the L metrics, and the first exact algorithm for the L p metric for any fixed rational p with 1<p<∞ whose time complexity is f(k)⋅(n k+nlog n), where f(k) is a function dependent only on k. Note that prior to this paper there was no known exact algorithm even for the L 2 metric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abellanas, M., Hurtado, F., Icking, C., Klein, R., Langetepe, E., Ma, L., Palop, B., Sacristán, V.: The farthest color Voronoi diagram and related problems. Technical report 002, Rheinische Friedrich–Wilhelms–Universität Bonn (2006)

  2. Ajtai, M., Komlos, J., Szemeredi, E.: An O(nlog n) sorting network. Combinatorica 3, 1–19 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ayad, A.: A survey on the complexity of solving algebraic systems. Int. Math. Forum 5(7), 333–353 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Bae, S.W., Lee, C., Choi, S.: On exact solutions to the Euclidean bottleneck Steiner tree problem. Inf. Process. Lett. 110(16), 672–678 (2010)

    Article  MathSciNet  Google Scholar 

  5. Balaban, I.J.: An optimal algorithm for finding segments intersections. In: Proceedings of the 11th Annual Symposium on Computational Geometry, pp. 211–219. ACM, New York (1995)

    Chapter  Google Scholar 

  6. Brass, P., Moser, W., Pach, J.: Research Problems in Discrete Geometry. Springer, Berlin (2005)

    MATH  Google Scholar 

  7. Chiang, C., Sarrafzadeh, M., Wong, C.K.: A powerful global router: based on Steiner min-max trees. In: Proceedings of IEEE International Conference on CAD, pp. 2–5 (1989)

    Google Scholar 

  8. Cole, R.: Slowing down sorting networks to obtain faster sorting algorithms. J. ACM 34(1), 200–208 (1987)

    Article  Google Scholar 

  9. Dickenstein, A., Emiris, I.Z.: Solving Polynomial Equations: Foundations, Algorithms, and Applications. Algorithms and Computation in Mathematics, vol. 14. Springer, Berlin (2005)

    MATH  Google Scholar 

  10. Elzinga, J., Hearn, D., Randolph, W.D.: Minimax multifacility location with Euclidean distances. Transp. Sci. 10, 321–336 (1976)

    Article  MathSciNet  Google Scholar 

  11. Faugère, J., Gianni, P., Lazard, D., Mora, F.: Efficient computation of zero-dimensional Gröbner bases by change of ordering. J. Symb. Comput. 16(4), 329–344 (1993)

    Article  MATH  Google Scholar 

  12. Ganley, J.L., Salowe, J.S.: Optimal and approximate bottleneck Steiner trees. Oper. Res. Lett. 19, 217–224 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Huttenlocher, D.P., Kedem, K., Sharir, M.: The upper envelope of Voronoi surfaces and its applications. Discrete Comput. Geom. 9, 267–291 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kedem, K., Livne, R., Pach, J., Sharir, M.: On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles. Discrete Comput. Geom. 1(1), 59–71 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lakshman, Y.N.: A single exponential bound on the complexity of computing Gröbner bases of zero dimensional ideals. In: Effective Methods in Algebraic Geometry. Progress in Mathematics, vol. 94, pp. 227–234. Birkhäuser, Basel (1991)

    Chapter  Google Scholar 

  16. Li, Z.-M., Zhu, D.-M., Ma, S.-H.: Approximation algorithm for bottleneck Steiner tree problem in the Euclidean plane. J. Comput. Sci. Technol. 19(6), 791–794 (2004)

    Article  MathSciNet  Google Scholar 

  17. Love, R.F., Wesolowsky, G.O., Kraemer, S.A.: A multifacility minimax location problem with Euclidean distances. Int. J. Prod. Res. 11, 37–45 (1973)

    Article  Google Scholar 

  18. Megiddo, N.: Applying parallel computation algorithms in the design of serial algorithms. J. ACM 30(4), 852–865 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  19. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and Its Applications, vol. 31. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

  20. Prüfer, H.: Neuer Beweis eines Satzes über Permutationen. Arch. Math. Phys. 27, 742–744 (1918)

    Google Scholar 

  21. Rouillier, F.: Solving zero-dimensional systems through the rational univariate representation. Appl. Algebra Eng. Commun. Comput. 9, 433–461 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sarrafzadeh, M., Wong, C.K.: Bottleneck Steiner trees in the plane. IEEE Trans. Comput. 41(3), 370–374 (1992)

    Article  MathSciNet  Google Scholar 

  23. Shioura, A., Tamura, A., Uno, T.: An optimal algorithm for scanning all spanning trees of undirected graphs. SIAM J. Comput. 26(3), 678–692 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Stanley, R.P.: Enumerative Combinatorics: Volume 2. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  25. van Oostrum, R., Veltkamp, R.C.: Parametric search made practical. Comput. Geom. Theory Appl. 28(2–3), 75–88 (2004)

    MATH  Google Scholar 

  26. Wang, L., Du, D.-Z.: Approximations for a bottleneck Steiner tree problem. Algorithmica 32, 554–561 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, L., Li, Z.: An approximation algorithm for a bottleneck k-Steiner tree problem in the Euclidean plane. Inf. Process. Lett. 81, 151–156 (2002)

    Article  MATH  Google Scholar 

  28. Warme, D.M., Winter, P., Zachariasen, M.: Exact algorithms for plane Steiner tree problems: a computational study. In: Du, D.Z., Smith, J.M., Rubinstein, J.H. (eds.) Advances in Steiner Trees, pp. 81–116. Kluwer Academic, Norwell (2000)

    Google Scholar 

  29. Zong, C.: The kissing numbers of convex bodies—a brief survey. Bull. Lond. Math. Soc. 30, 1–30 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Won Bae.

Additional information

A preliminary version of this paper was presented at the 26th International Symposium on Algorithms and Computation (ISAAC 2009). Work by S.W. Bae was supported by the Contents Convergence Software Research Center funded by the GRRC Program of Gyeonggi Province, South Korea. Work by C. Lee and S. Choi was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2010-0024092). Work by S. Tanigawa was supported by Grant-in-Aid for JSPS Research Fellowship for Young Scientists.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bae, S.W., Choi, S., Lee, C. et al. Exact Algorithms for the Bottleneck Steiner Tree Problem. Algorithmica 61, 924–948 (2011). https://doi.org/10.1007/s00453-011-9553-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-011-9553-y

Keywords

Navigation