Skip to main content
Log in

A Simple Ant Colony Optimizer for Stochastic Shortest Path Problems

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Ant Colony Optimization (ACO) is a popular optimization paradigm inspired by the capabilities of natural ant colonies of finding shortest paths between their nest and a food source. This has led to many successful applications for various combinatorial problems. The reason for the success of ACO, however, is not well understood and there is a need for a rigorous theoretical foundation.

We analyze the running time of a simple ant colony optimizer for stochastic shortest path problems where edge weights are subject to noise that reflects delays and uncertainty. In particular, we consider various noise models, ranging from general, arbitrary noise with possible dependencies to more specific models such as independent gamma-distributed noise. The question is whether the ants can find or approximate shortest paths in the presence of noise. We characterize instances where the ants can discover the real shortest paths efficiently. For general instances we prove upper bounds for the time until the algorithm finds reasonable approximations. Contrariwise, for independent gamma-distributed noise we present a graph where the ant system needs exponential time to find a good approximation. The behavior of the ant system changes dramatically when the noise is perfectly correlated as then the ants find shortest paths efficiently. Our results shed light on trade-offs between the noise strength, approximation guarantees, and expected running times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abraham, I., Fiat, A., Goldberg, A.V., Werneck, R.F.F.: Highway dimension, shortest paths, and provably efficient algorithms. In: Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’10), pp. 782–793. SIAM, Philadelphia (2010)

    Google Scholar 

  2. Attiratanasunthron, N., Fakcharoenphol, J.: A running time analysis of an ant colony optimization algorithm for shortest paths in directed acyclic graphs. Inf. Process. Lett. 105(3), 88–92 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bast, H., Funke, S., Sanders, P., Schultes, D.: Fast routing in road networks with transit nodes. Science 316(5824), 566 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baswana, S., Biswas, S., Doerr, B., Friedrich, T., Kurur, P.P., Neumann, F.: Computing single source shortest paths using single-objective fitness functions. In: Proceedings of the International Workshop on Foundations of Genetic Algorithms (FOGA’09), pp. 59–66. ACM, New York (2009)

    Google Scholar 

  5. Bertsekas, D.P., Tsitsiklis, J.N.: An analysis of stochastic shortest path problems. Math. Oper. Res. 16(3), 580–595 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Borkar, V., Das, D.: A novel ACO algorithm for optimization via reinforcement and initial bias. Swarm Intell. 3(1), 3–34 (2009)

    Article  Google Scholar 

  7. Boyan, J.A., Mitzenmacher, M.: Improved results for route planning in stochastic transportation. In: Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’01), pp. 895–902. SIAM, Philadelphia (2001)

    Google Scholar 

  8. Chan, T.M.: More algorithms for all-pairs shortest paths in weighted graphs. In: Proceedings of the Annual ACM Symposium on Theory of Computing (STOC’07), pp. 590–598. ACM, New York (2007)

    Google Scholar 

  9. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  10. Doerr, B., Johannsen, D.: Edge-based representation beats vertex-based representation in shortest path problems. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’10), pp. 759–766. ACM, New York (2010)

    Chapter  Google Scholar 

  11. Doerr, B., Theile, M.: Improved analysis methods for crossover-based algorithms. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’09), pp. 247–254. ACM, New York (2009)

    Google Scholar 

  12. Doerr, B., Happ, E., Klein, C.: A tight analysis of the (1+1)-EA for the single source shortest path problem. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC’07), pp. 1890–1895. IEEE Press, New York (2007)

    Chapter  Google Scholar 

  13. Doerr, B., Happ, E., Klein, C.: Crossover can provably be useful in evolutionary computation. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’08), pp. 539–546. ACM, New York (2008)

    Chapter  Google Scholar 

  14. Doerr, B., Johannsen, D., Kötzing, T., Neumann, F., Theile, M.: More effective crossover operators for the all-pairs shortest path problem. In: Proceedings of the International Conference on Parallel Problem Solving from Nature (PPSN’10), pp. 184–193. Springer, Berlin (2010)

    Chapter  Google Scholar 

  15. Doerr, B., Neumann, F., Sudholt, D., Witt, C.: Runtime analysis of the 1-ANT ant colony optimizer. Theor. Comput. Sci. 412(17), 1629–1644 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dorigo, M., Blum, C.: Ant colony optimization theory: a survey. Theor. Comput. Sci. 344(2–3), 243–278 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66 (1997)

    Article  Google Scholar 

  18. Dorigo, M., Stützle, T.: Ant Colony Optimization, 1st edn. MIT Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  19. Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: an autocatalytic optimizing process. Technical Report 91-016 Revised, Politecnico di Milano (1991)

  20. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theor. Comput. Sci. 276(1–2), 51–81 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dubhashi, D., Panconesi, A.: Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  22. Fan, Y.Y., Kalaba, R.E., Moore, J.E.: Arriving on time. J. Optim. Theory Appl. 127(3), 497–513 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Feige, U.: On sums of independent random variables with unbounded variance and estimating the average degree in a graph. SIAM J. Comput. 35(4), 964–984 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gutjahr, W.J., Sebastiani, G.: Runtime analysis of ant colony optimization with best-so-far reinforcement. Methodol. Comput. Appl. Probab. 10(3), 409–433 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Horoba, C.: Exploring the runtime of an evolutionary algorithm for the multi-objective shortest path problem. Evol. Comput. 18(3), 357–381 (2010)

    Article  Google Scholar 

  26. Horoba, C., Sudholt, D.: Running time analysis of ACO systems for shortest path problems. In: Proceedings of the International Workshop on Engineering Stochastic Local Search Algorithms (SLS ’09), pp. 76–91. Springer, Berlin (2009)

    Google Scholar 

  27. Horoba, C., Sudholt, D.: Ant colony optimization for stochastic shortest path problems. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’10), pp. 1465–1472. Springer, Berlin (2010)

    Chapter  Google Scholar 

  28. Kolavali, S.R., Bhatnagar, S.: Ant colony optimization algorithms for shortest path problems. In: Altman, E., Chaintreau, A. (eds.) Network Control and Optimization, pp. 37–44. Springer, Berlin (2009)

    Chapter  Google Scholar 

  29. Kötzing, T., Lehre, P.K., Oliveto, P.S., Neumann, F.: Ant colony optimization and the minimum cut problem. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’10), pp. 1393–1400. ACM, New York (2010)

    Chapter  Google Scholar 

  30. Kötzing, T., Neumann, F., Röglin, H., Witt, C.: Theoretical properties of two ACO approaches for the traveling salesman problem. In: Proceedings of the International Conference on Ant Colony Optimization and Swarm Intelligence (ANTS’10), pp. 324–335. Springer, Berlin (2010)

    Google Scholar 

  31. Kötzing, T., Neumann, F., Sudholt, D., Wagner, M.: Simple Max-Min ant systems and the optimization of linear pseudo-Boolean functions. In: Proceedings of the 11th Workshop on Foundations of Genetic Algorithms (FOGA 2011), pp. 209–218. ACM, New York (2011)

    Chapter  Google Scholar 

  32. Miller-Hooks, E.D., Mahmassani, H.S.: Least expected time paths in stochastic, time-varying transportation networks. Transp. Sci. 34(2), 198–215 (2000)

    Article  MATH  Google Scholar 

  33. Neumann, F., Theile, M.: How crossover speeds up evolutionary algorithms for the multi-criteria all-pairs-shortest-path problem. In: Proceedings of the International Conference on Parallel Problem Solving from Nature (PPSN’10), pp. 667–676. Springer, Berlin (2010)

    Chapter  Google Scholar 

  34. Neumann, F., Witt, C.: Ant colony optimization and the minimum spanning tree problem. Theor. Comput. Sci. 411(25), 2406–2413 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Neumann, F., Witt, C.: Runtime analysis of a simple ant colony optimization algorithm. Algorithmica 54(2), 243–255 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Neumann, F., Sudholt, D., Witt, C.: Rigorous analyses for the combination of ant colony optimization and local search. In: Proceedings of the International Conference on Ant Colony Optimization and Swarm Intelligence (ANTS’08), pp. 132–143. Springer, Berlin (2008)

    Chapter  Google Scholar 

  37. Neumann, F., Sudholt, D., Witt, C.: Analysis of different MMAS ACO algorithms on unimodal functions and plateaus. Swarm Intell. 3(1), 35–68 (2009)

    Article  Google Scholar 

  38. Neumann, F., Sudholt, D., Witt, C.: A few ants are enough: ACO with iteration-best update. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’10), pp. 63–70. ACM, New York (2010)

    Chapter  Google Scholar 

  39. Nikolova, E., Brand, M., Karger, D.R.: Optimal route planning under uncertainty. In: Proceedings of the International Conference on Automated Planning and Scheduling (ICAPS’06), pp. 131–141. AAAI Press, Menlo Park (2006)

    Google Scholar 

  40. Orlin, J.B., Madduri, K., Subramani, K., Williamson, M.: A faster algorithm for the single source shortest path problem with few distinct positive lengths. J. Discrete Algorithms 8(2), 189–198 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Papadimitriou, C.H., Yannakakis, M.: Shortest paths without a map. Theor. Comput. Sci. 84(1), 127–150 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  42. Scharnow, J., Tinnefeld, K., Wegener, I.: The analysis of evolutionary algorithms on sorting and shortest paths problems. J. Math. Model. Algorithms 3(4), 349–366 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sudholt, D.: Using Markov-chain mixing time estimates for the analysis of ant colony optimization. In: Proceedings of the 11th Workshop on Foundations of Genetic Algorithms (FOGA 2011), pp. 139–150. ACM, New York (2011)

    Chapter  Google Scholar 

  44. Sudholt, D., Thyssen, C.: Running time analysis of ant colony optimization for shortest path problems. J. Discrete Algorithms. doi:10.1016/j.jda.2011.06.002 (2011, to appear)

  45. Zhou, Y.: Runtime analysis of an ant colony optimization algorithm for TSP instances. IEEE Trans. Evol. Comput. 13(5), 1083–1092 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Samitha Samaranayake and Sébastien Blandin from UC Berkeley for references and discussions on stochastic shortest path problems and Thomas Sauerwald for pointing us to Feige [23]. Dirk Sudholt was partly supported by EPSRC grant EP/D052785/1 and a postdoctoral fellowship from the German Academic Exchange Service while visiting the International Computer Science Institute in Berkeley, CA, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Sudholt.

Additional information

A preliminary version of this work appeared in [27].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sudholt, D., Thyssen, C. A Simple Ant Colony Optimizer for Stochastic Shortest Path Problems. Algorithmica 64, 643–672 (2012). https://doi.org/10.1007/s00453-011-9606-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-011-9606-2

Keywords

Navigation