Skip to main content
Log in

An Efficient Randomized Algorithm for Higher-Order Abstract Voronoi Diagrams

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Given a set of n sites in the plane, the order-k Voronoi diagram is a planar subdivision such that all points in a region share the same k nearest sites. The order-k Voronoi diagram arises for the k-nearest-neighbor problem, and there has been a lot of work for point sites in the Euclidean metric. In this paper, we study order-k Voronoi diagrams defined by an abstract bisecting curve system that satisfies several practical axioms, and thus our study covers many concrete order-k Voronoi diagrams. We propose a randomized incremental construction algorithm that runs in \(O(k(n-k)\log ^2 n +n\log ^3 n)\) steps, where \(O(k(n-k))\) is the number of faces in the worst case. This result applies to disjoint line segments in the \(L_p\) norm, convex polygons of constant size, points in the Karlsruhe metric, and so on. In fact, a running time with a polylog factor to the number of faces was only achieved for point sites in the \(L_1\) or Euclidean metric before.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Actually, the number of times does not matter. It is sufficient that the size of the sequence of sub-faces is proportional to the size of the boundary of F.

References

  1. Agarwal, P.K., de Berg, M., Matousek, J., Schwarzkopf, O.: Constructing levels in arrangements and higher order Voronoi diagrams. SIAM J. Comput. 27(3), 654–667 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aurenhammer, F., Schwarzkopf, O.: A simple on-line randomized incremental algorithm for computing higher order Voronoi diagrams. Int. J. Comput. Geom. Appl. 2(4), 363–381 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bohler, C., Cheilaris, P., Klein, R., Liu, C.-H., Papadopoulou, E., Zavershynskyi, M.: On the complexity of higher order abstract Voronoi diagrams. Comput. Geom. 48(8), 539–551 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bohler, C., Klein, R.: Abstract Voronoi diagrams with disconnected regions. Int. J. Comput. Geom. Appl. 24(4), 347–372 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bohler, C., Klein, R., Liu, C.-H.: An efficient randomized algorithm for higher-order abstract Voronoi diagrams. In: Proceeding of the 32nd International Symposium on Computational Geometry (SoCG 2016), pp. 21:1–21:15 (2016)

  6. Bohler, C., Liu, C.-H., Papadopoulou, E., Zavershynskyi, M.: A randomized divide and conquer algorithm for higher-order abstract Voronoi diagrams. Comput. Geom. 59, 26–38 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boissonnat, J.-D., Devillers, O., Teillaud, M.: A semidynamic construction of higher-order Voronoi diagrams and its randomized analysis. Algorithmica 9(4), 329–356 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chan, T.M.: Random sampling, halfspace range reporting, and construction of (\(\le k\))-levels in three dimensions. SIAM J. Comput. 30(2), 561–575 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chan, T.M., Tsakalidis, K.: Optimal deterministic algorithms for 2-d and 3-d shallow cuttings. Discrete Comput. Geom. 56(4), 866–881 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chazelle, B.: Triangulating a simple polygon in linear time. Discrete Comput. Geom. 6, 485–524 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chazelle, B., Edelsbrunner, H.: An improved algorithm for constructing \(k\)-th-order Voronoi diagrams. IEEE Trans. Comput. 36(11), 1349–1354 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chazelle, B., Edelsbrunner, H., Guibas, L.J., Sharir, M., Snoeyink, J.: Computing a face in an arrangement of line segments and related problems. SIAM J. Comput. 22(6), 1286–1302 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chew, L.P., Scot Drysdale, R.L.: Voronoi diagrams based on convex distance functions. In: Proceedings of the First Annual Symposium on Computational Geometry, (SoCG 1985), pp. 235–244 (1985)

  14. Clarkson, K.L.: New applications of random sampling in computational geometry. Discrete Comput. Geom. 2, 195–222 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  15. Clarkson, K.L., Shor, P.W.: Application of random sampling in computational geometry, II. Discrete Comput. Geom. 4, 387–421 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gemsa, A., Lee, D.T., Liu, C.-H., Wagner, D.: Higher order city Voronoi diagrams. In: Proceedings of the 13th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT), pp. 59–70 (2012)

  17. Haussler, D., Welzl, E.: Epsilon-nets and simplex range queries. Discrete Comput. Geom. 2, 127–151 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  18. Klein, R.: Voronoi diagrams in the Moscow metric (extended abstract). In: Proceedings of the 14th International Workshop of Graph-Theoretic Concepts in Computer Science (WG88), pp. 434–441 (1988)

  19. Klein, R.: Concrete and Abstract Voronoi Diagrams. Volume 400 of Lecture Notes in Computer Science. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  20. Klein, R., Langetepe, E., Nilforoushan, Z.: Abstract Voronoi diagrams revisited. Comput. Geom. 42(9), 885–902 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Klein, R., Mehlhorn, K., Meiser, S.: Randomized incremental construction of abstract Voronoi diagrams. Comput. Geom. 3, 157–184 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lee, D.T.: On k-nearest neighbor Voronoi diagrams in the plane. IEEE Trans. Comput. 31(6), 478–487 (1982)

    MathSciNet  MATH  Google Scholar 

  23. Liu, C.-H., Lee, D.T.: Higher-order geodesic Voronoi diagrams in a polygonal domain with holes. In: Proceedings of the Twenty-Fourth Annual Symposium on Discrete Algorithms (SODA), pp. 1633–1645 (2013)

  24. Mehlhorn, K., Meiser, S., Rasch, R.: Furthest site abstract Voronoi diagrams. Int. J. Comput. Geom. Appl. 11(6), 583–616 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mulmuley, K.: Computational Geometry: An Introduction Through Randomized Algorithms. Prentice Hall, Englewood Cliffs (1994)

    MATH  Google Scholar 

  26. Papadopoulou, E.: The Hausdorff Voronoi diagram of point clusters in the plane. Algorithmica 40(2), 63–82 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Papadopoulou, E., Zavershynskyi, M.: On higher order Voronoi diagrams of line segments. Algorithmica 74(1), 415–439 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ramos, E.A.: On range reporting, ray shooting and k-level construction. In: Proceedings of the Fifteenth Annual Symposium on Computational Geometry (SoCG), pp. 390–399 (1999)

  29. Tarjan, R.E., Van Wyk, C.J.: An \(O(n \log \log n)\)-time algorithm for triangulating a simple polygon. SIAM J. Comput. 17(1), 143–178 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We deeply appreciate all valuable comments from the anonymous reviewers for SoCG 2016 and Algorithmica.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Hung Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A preliminary version appeared in Proceedings of International Symposium on Computational Geometry (SoCG) 2016 [5]. This work was supported by Deutsche Forschungsgemeinschaft (DFG Kl 655/19) in a DACH Project.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bohler, C., Klein, R. & Liu, CH. An Efficient Randomized Algorithm for Higher-Order Abstract Voronoi Diagrams. Algorithmica 81, 2317–2345 (2019). https://doi.org/10.1007/s00453-018-00536-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-018-00536-7

Keywords

Navigation