Skip to main content
Log in

Faster Algorithms for Security Games on Matroids

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Given a matroid M defined by an independence oracle on a ground set E, the Matroid Base Game is played by two players: the defender chooses a basis B and (simultaneously) the attacker chooses an element \(e \in E\). The attacker incurs a cost c(e) for choosing an element e, and if \(e \in B\) then there is a probability p(e) that the attacker will detect the defender. The defender has to find a bases-selection strategy that minimizes the average probability of being detected. The attacker has to find a probabilistic selection strategy that maximizes the average detection probability minus its average cost. An algorithm to compute Nash-equilibrium mixed strategies was given in Szeszlér (Math Program 161:347–364, 2016). Its time complexity is \(O(|E|^{10} IO)\), where IO is the time that it takes one call to the independence oracle. Here we present an algorithm that requires \(O(|E|^6 IO)\) time. For graphic matroids, i.e., when the defender chooses a spanning tree in a graph \(G=(V,E)\), and the attacker chooses an edge, we give an algorithm that takes \(O(|V|^4 |E|^{1/2})\) time. This type of game is extended to common bases of two matroids. For this case we give a strongly polynomial algorithm, settling a question that was left open in Szeszlér (2016). We also treat the case when the defender chooses a rooted arborescence in a directed graph \(D=(V,\mathscr {A})\), and the attacker chooses an arc, we use this structure to give an algorithm that requires \(O(|V||\mathscr {A}|^3 \log (|V|^2/|\mathscr {A}|) \log |\mathscr {A}|)\) time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aziz, H., Lachish, O., Paterson, M., Savani, R.: Wiretapping a hidden network. In: Leonardi, S. (ed.) Internet and Network Economics, pp. 438–446. Springer, Berlin (2009)

    Chapter  Google Scholar 

  2. Barahona, F.: Separating from the dominant of the spanning tree polytope. Oper. Res. Lett. 12, 201–203 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barahona, F.: Packing spanning trees. Math. Oper. Res. 20, 104–115 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cheriyan, J., Maheshwari, S.N.: Analysis of preflow push algorithms for maximum network flow. In: Nori, K.V., Kumar, S. (eds.) Foundations of Software Technology and Theoretical Computer Science. Springer, Berlin (1988)

    Google Scholar 

  5. Cunningham, W.H.: Testing membership in matroid polyhedra. J Comb. Theory B 36(2), 161–188 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dinkelbach, W.: On nonlinear fractional programming. Manag. Sci. 13, 492–498 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  7. Edmonds, J.: Submodular Functions, Matroids, and Certain Polyhedra. In: Jünger, M., Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization — Eureka, You Shrink!: Papers Dedicated to Jack Edmonds 5th International Workshop Aussois, France, March 5–9, 2001 Revised Papers, pp. 11–26. Springer, Berlin (2003)

    Chapter  Google Scholar 

  8. Edmonds, J.: Matroids and the greedy algorithm. Math. Program. 1, 127–136 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  9. Edmonds, J.: Edge-disjoint branchings. Comb. Algorithms 9, 91–96 (1973)

    MathSciNet  Google Scholar 

  10. Gabow, H.N., Manu, K.: Packing algorithms for arborescences (and spanning trees) in capacitated graphs. Math. Program. 82, 83–109 (1998)

    MathSciNet  MATH  Google Scholar 

  11. Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum-flow problem. J. ACM 35, 921–940 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1, 169–197 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gueye, A., Walrand, J.C., Anantharam, V.: Design of network topology in an adversarial environment. In: Alpcan, T., Buttyán, L., Baras, J.S. (eds.) Decision and Game Theory for Security, pp. 1–20. Springer, Berlin (2010)

    Google Scholar 

  14. Gueye, A., Walrand, J.C., Anantharam, V.: A network topology design game: How to choose communication links in an adversarial environment. In: Proceedings of the 2nd International ICST Conference on Game Theory for Networks, GameNets, vol. 11 (2011)

  15. Hao, J., Orlin, J.B.: A faster algorithm for finding the minimum cut in a directed graph. J. Algorithms 17, 424–446 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Laszka, A., Szeszlér, D.: Hide and seek in digital communication: the steganography game, In: Proceedings of the 9th Hungarian–Japanese Symposium on Discrete Mathematics and its Applications, Fukuoka, Japan, pp. 126–136 (2015)

  17. Narayanan, H.: A rounding technique for the polymatroid membership problem. Linear Algebra Appl. 221, 41–57 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nash-Williams, C.S.J.: Edge-disjoint spanning trees of finite graphs. J. Lond. Math. Soc. 1, 445–450 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  19. Neumann, J.V.: Zur theorie der gesellschaftsspiele. Mathematische Annalen 100, 295–320 (1928)

    Article  MathSciNet  MATH  Google Scholar 

  20. Orlin, J.B.: A faster strongly polynomial time algorithm for submodular function minimization. Math. Program. 118, 237–251 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Radzik, T.: Fractional combinatorial optimization. In: Pardalos, P.M., Du, D.-Z., Graham, R.L. (eds.) Handbook of combinatorial optimization, pp. 1311–1355. Springer, Berlin (2013)

    Chapter  Google Scholar 

  22. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer Science & Business Media, Berlin (2002)

    MATH  Google Scholar 

  23. Szeszlér, D.: Security games on matroids. Math. Program. 161, 347–364 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tutte, W.T.: On the problem of decomposing a graph into n connected factors. J. Lond. Math. Soc. 1, 221–230 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, Q., Yang, X., Zhang, J.: A class of inverse dominant problems under weighted \(l_\infty \) norm and an improved complexity bound for Radzik’s algorithm. J. Global Optim. 34, 551–567 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to H. Narayanan and to S.T. McCormick for some helpful discussions. We are also grateful to the referees whose comments helped us to improve the presentation

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Barahona.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baïou, M., Barahona, F. Faster Algorithms for Security Games on Matroids. Algorithmica 81, 1232–1246 (2019). https://doi.org/10.1007/s00453-018-0466-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-018-0466-x

Keywords

Navigation