Skip to main content
Log in

Constrained Minimum Passage Time in Random Geometric Graphs

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Let \(G\) be a random geometric graph formed by \(n\) nodes with adjacency distance \(r_n\) and let each edge of \(G\) be assigned an independent exponential passage time with mean that depends on the graph size \(n.\) We connect \(G\) to two nodes source \(s_A\) and destination \(s_B\) at deterministic locations spaced \(d_n\) apart in the unit square and find upper and lower bounds on the minimum passage time between \(s_A\) and \(s_B\) through paths in \(G\) having constant stretch, i.e., whose length is constrained to be proportional to the Euclidean distance between \(s_A\) and \(s_B.\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alon, N., Spencer, J.: The Probabilistic Method. Wiley Interscience, New Jersy (2008)

    Book  Google Scholar 

  2. Bradonjic, M., Elsasser, R., Friedrich, T., Sauerwald, T., Stauffer, A.: Efficient Broadcast on Random Geometric Graphs. Proc. SODA 2010, 1412–1421 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Ferrero, R., Gandino, F.: Analysis of random geometric graph for wireless network configuration. Proc. ICMU 2017, 1–6 (2017)

    Google Scholar 

  4. Franceschetti, M., Dousse, O., Tse, D.N.C., Thiran, P.: Closing Gap in the Capacity of Wireless Networks via Percolation Theory. IEEE Trans. Inf. Theory 53, 1009–1018 (2007)

    Article  MathSciNet  Google Scholar 

  5. Galambos, J.: Asymptotic Theory of Extreme Order Statistics. Wiley, New Jersy (1978)

    MATH  Google Scholar 

  6. Gandham, S.R., Dawande, M., Prakash, R., Venkatesan, S.: Energy efficient schemes for wireless sensor networks with multiple mobile base stations. Proc. GLOBECOM 2003, 377–381 (2003)

    Google Scholar 

  7. Ganesan, G.: Infection spread in random geometric graphs. Adv. Appl. Probab. 47, 164–181 (2015)

    Article  MathSciNet  Google Scholar 

  8. Ganesan, G.: Stretch and diameter in random geometric graphs. Algorithmica 80, 300–330 (2018)

    Article  MathSciNet  Google Scholar 

  9. Gupta, P., Kumar, P.R.: Critical Power for Asymptotic Connectivity in Wireless Networks, pp. 2203–2214. Stochastic Analysis, Control, Optimization and Applications (1998)

  10. Meester, R., Roy, R.: Continuum Percolation. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  11. Muthukrishnan, S., Pandurangan, G.: The bin-covering technique for thresholding random geometric graph properties. Proc. SODA 2005, 989–998 (2005)

    MathSciNet  MATH  Google Scholar 

  12. Penrose, M.: Random Geometric Graphs. Oxford University Press, Oxford (2003)

    Book  Google Scholar 

  13. Zennaro, D., Ahmad, A., Vangelista, L., Serpedin, E., Nounou, H., Nounou, M.: Network-wide clock synchronization via message passing with exponentially distributed link delays. IEEE Trans. Commun. 61, 2012–2024 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

I thank Professors Rahul Roy, C. R. Subramanian and the referees for crucial comments that led to an improvement of the paper. I also thank IMSc for my fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghurumuruhan Ganesan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Edge weight assigments

Let \(\{W_{j_1,j_2,j_3}\}_{j_1,j_2,j_3 \ge 1}\) be i.i.d. random variables with cumulative distribution function (cdf) \(F_n\) that are also independent of the node locations \(\{X_i\}.\) We first describe edge weight assignments and then discuss the conditional independence property.


Edge weight assignments To assign weights to the edges of the random graph \(G\) from the set \(\{W_{j_1,j_3,j_4}\},\) we follow an analogous procedure as in Chapter \(1\) of Meester and Roy [10]. The basic idea is to first assign each node \(X_j,\) a unique pair of positive integers \(m(X_j) := (q,l_j).\) Next if \(X_i\) and \(X_j\) are joined by an edge \((X_i,X_j)\) in \(G,\) then we define the passage time \(t(X_i,X_j) := W_{q,l_i,l_j}.\) The integer pair \((q,l_j)\) is obtained by dividing the unit square \(S\) into successively finer subsquares of size \(\frac{1}{2^{q}}, q \ge 1\) each, until each subsquare contains at most one node of \(\{X_i\}.\)

Formally, for \(k \ge 1\) divide the unit square \(S\) into disjoint \(\frac{1}{2^{k}} \times \frac{1}{2^{k}}\) squares \(\{S_{k,l}\}_{1 \le l \le 2^{2k}}.\) Let \(q\) be the smallest integer such that each square in \(\{S_{q,l}\}\) contains at most one node of \(\{X_i\}.\) If node \(X_j\) is present in square \(S_{q,l_j},\) we then set \(m(X_j) := (q,l_j).\)

We illustrate the above procedure in Fig. 3, where the unit square \(ABCD\) is first subdivided into \(4\) subsquares each of side length \(\frac{1}{2}.\) This partition is not fine enough since the square \(AEFG\) contains two nodes \(x\) and \(y.\) Further subdividing \(\frac{1}{2} \times \frac{1}{2}\) subsquare into \(4\) subsquares each, we get a fine enough partition so that each subsquare contains at most one node.


Conditional independence property We use the following conditional independence property throughout. For any measurable function \(g = g(X_1,\ldots ,X_n)\) and any \(i \ne j,\) we have

$$\begin{aligned} .&{\mathbb {P}}(t(X_i,X_j)< x, g< y) \nonumber \\&\;\;\;=\;\;\sum _{q,l_i,l_j} {\mathbb {P}}(t(X_i,X_j)< x, g< y,m(X_i) = (q,l_i), m(X_j) = (q,l_j)) \nonumber \\&\;\;\;= \;\;\sum _{q,l_i,l_j} {\mathbb {P}}(W_{q,l_i,l_j}< x, g< y, m(X_i) = (q,l_i), m(X_j) = (q,l_j)) \nonumber \\&\;\;\;= \;\;\sum _{q,l_i,l_j} {\mathbb {P}}(W_{q,l_i,l_j}< x) {\mathbb {P}} (g< y, m(X_i) = (q,l_i), m(X_j) = (q,l_j)) \nonumber \\&\;\;\;= \;\;F_n(x) \sum _{q,l_i,l_j} {\mathbb {P}} (g< y, m(X_i) = (q,l_i), m(X_j) = (q,l_j)) \nonumber \\&\;\;\;= \;\;F_n(x) {\mathbb {P}} (g < y). \end{aligned}$$
(A1.1)

We then say that given the node locations \(\{X_i\},\) the passage times \(\{t(X_i,X_j)\}\) are independent in the sense of (A1.1).

Fig. 3
figure 3

Subdividing the unit square into fine subsquares until each subsquare contains at most one node

Appendix 2: Deviation estimates

We use the following deviation estimate throughout. Let \(\{R_j\}_{1 \le j \le m}\) be independent Bernoulli random variables with 

$$\begin{aligned} p_j = {\mathbb {P}}(R_j = 1) = 1-{\mathbb {P}}(R_j = 0) > 0 \end{aligned}$$

and let \(R = \sum _{j=1}^{m} R_j.\) If \(p_{low} \le p_j \le p_{up}\) for all \(1 \le j \le m\) then then

$$\begin{aligned} {\mathbb {P}}\left( \frac{mp_{low}}{2} \le R \le 2mp_{up} \right) \ge 1-4\exp \left( -\frac{mp_{low}}{16}\right) \end{aligned}$$
(A2.1)

for all \(m \ge 1.\)

Proof of (A2.1): Letting \(\mu = {\mathbb {E}}R\) and \(0 < \epsilon \le \frac{1}{2},\) we have from Corollary A.1.14, pp. 312 of [1] that

$$\begin{aligned} {\mathbb {P}}\left( \left| R - \mu \right| \ge \mu \epsilon \right) \le 2\exp \left( -C(\epsilon )\mu \right) \end{aligned}$$
(A2.2)

where \(C(\epsilon ) = \min \left( \frac{\epsilon ^2}{2}, -\epsilon + (1+\epsilon )\log (1+\epsilon )\right) \ge \frac{\epsilon ^2}{4}\) because \(\log (1+\epsilon ) > \epsilon - \frac{\epsilon ^2}{2}\) and so 

$$\begin{aligned} -\epsilon + (1+\epsilon )\log (1+\epsilon ) \ge -\epsilon + (1+\epsilon )\left( \epsilon - \frac{\epsilon ^2}{2}\right) = \frac{\epsilon ^2}{2} - \frac{\epsilon ^3}{2} \ge \frac{\epsilon ^2}{4}, \end{aligned}$$

since \(0 < \epsilon \le \frac{1}{2}.\) Setting \(\epsilon = \frac{1}{2}\) we therefore get

$$\begin{aligned} {\mathbb {P}}(R \ge 2mp_{up}) \le {\mathbb {P}}\left( X \ge \frac{3\mu _m}{2}\right) \le 2e^{-\mu _m/16} \le 2e^{-mp_{low}/16} \end{aligned}$$

and an analogous analysis holds for the lower bound. \(\square \)

Let \(R_1,\ldots ,R_m\) be independent exponential random variables with mean \(\lambda \) and let \(R = \sum _{j=1}^{m} R_j\) so that \({\mathbb {E}}R = m\lambda .\) We then have

$$\begin{aligned} {\mathbb {P}}\left( R \le 2m\lambda \right) \ge 1-e^{-m/6} \end{aligned}$$
(A2.3)

and

$$\begin{aligned} {\mathbb {P}}\left( R \ge m\frac{\log (1+\lambda )}{2}\right) \ge 1-\exp \left( -m\frac{\log (1+\lambda )}{2}\right) \end{aligned}$$
(A2.4)

Proof of (A2.3): For \(s < \frac{1}{\lambda },\) we have \({\mathbb {E}}e^{sR_i} = \lambda ^{-1}\int _{0}^{\infty }e^{sx}e^{-x\lambda ^{-1}} = \frac{1}{1-s\lambda }.\) Therefore

$$\begin{aligned} {\mathbb {P}}\left( R \ge 2m\lambda \right) \le e^{-2sm\lambda } {\mathbb {E}}e^{sR} \le e^{-2sm\lambda } \left( \frac{1}{1-s\lambda }\right) ^{m} = e^{-\delta m}, \end{aligned}$$

where \(\delta = 2s\lambda + \log \left( 1-s\lambda \right) .\) If \(s\lambda = \frac{1}{3},\) then

$$\begin{aligned} |\log (1-s\lambda )| = \sum _{k \ge 1} \frac{(s\lambda )^{k}}{k} \le \sum _{k \ge 1} (s\lambda )^{k} = \frac{s\lambda }{1-s\lambda } = \frac{1}{2} \end{aligned}$$

and so \(\delta = \frac{1}{6}\) and consequently, \({\mathbb {P}}(R \ge 2m\lambda ) \le e^{-m/6}.\)

For the lower bound, we let \(s > 0\) and get 

$$\begin{aligned} {\mathbb {E}}e^{-sR_i} = \lambda ^{-1}\int _{0}^{\infty }e^{-sx}e^{-x\lambda ^{-1}} = \frac{1}{1+s\lambda }. \end{aligned}$$

For \(x > 0\) we therefore have

$$\begin{aligned} {\mathbb {P}}\left( R \le mx\right) \le e^{smx} {\mathbb {E}}e^{-sR} \le e^{smx} \left( \frac{1}{1+s\lambda }\right) ^{m} = e^{-\theta m}, \end{aligned}$$

where \(\theta = \log (1+s\lambda ) - sx.\) Setting \(s=1\) and \(x = \frac{\log (1+\lambda )}{2}\) we get (A2.4).  \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganesan, G. Constrained Minimum Passage Time in Random Geometric Graphs. Algorithmica 83, 576–588 (2021). https://doi.org/10.1007/s00453-020-00766-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-020-00766-8

Keywords

Mathematics Subject Classification

Navigation