Skip to main content
Log in

An \(O(\lg \lg {\mathrm {OPT}})\)-Approximation Algorithm for Multi-guarding Galleries

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

We consider a generalization of the familiar art gallery problem in which individual points within the gallery need to be visible to some specified, but not necessarily uniform, number of guards. We provide an \(O(\lg \lg {\mathrm {OPT}})\)-approximation algorithm for this multi-guarding problem in simply-connected polygonal regions, with a minimum number (\({\mathrm {OPT}}\)) of vertex guards (possibly co-located). Our approximation algorithm is based on a polynomial-time algorithm for building what we call \(\varepsilon \)-multinets of size \(O\left( \frac{1}{\varepsilon }\lg \lg \frac{1}{\varepsilon }\right) \) for the instances of Multi-HittingSet  associated with our multi-guarding problem. We then apply a now-standard linear-programming technique to build an approximation algorithm from this \(\varepsilon \)-multinet finder. This paper corrects, and simplifies the analysis of, the \(O\left( \frac{1}{\varepsilon }\lg \lg \frac{1}{\varepsilon }\right) \)-time \(\varepsilon \)-net-finder described in [26], that was used to build an \(O(\lg \lg {\mathrm {OPT}})\)-approximation algorithm for the standard guarding problem in which all points within the gallery are required to be visible to at least one guard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. See Appendix for a comparison of our approach with that of [26], including a discussion of the source of the difficulty with the latter.

  2. It is a pseudopolynomial-time algorithm in that its running time may be linear in the ratio between the longest and shortest distances between two vertices.

References

  1. Aggarwal, A.: The art gallery theorem: its variations, applications and algorithmic aspects. Ph.D. thesis, The Johns Hopkins University (1984)

  2. Belleville, P.: Two-guarding simple polygons. In: Proceedings of 4th Canadian Conference on Computational Geometry. St. John’s, Newfoundland, pp. 103–108 (1992)

  3. Belleville, P., Bose, P., Czyzowicz, J., Urrutia, J., Zaks, J.: K-guarding polygons on the plane. In: Proceedings of 6th Canadian Conference on Computational Geometry. Saskatoon, Saskatchewan, pp. 381–386 (1994)

  4. Bereg, S.: On \(k\)-vertex guarding simple polygons. Computational Geometry and Discrete. \(K\hat{o}ky\hat{u}roku\), vol. 1641, pp. 106–113. Research Institute for Mathematical Sciences, Kyoto University, Kyoto (2008)

    Google Scholar 

  5. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Learnability and the Vapnik-Chervonenkis dimension. J. ACM 36(4), 929–965 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bose, P., Lubiw, A.: Efficient visibility queries in simple polygons. Comput. Geom. Theory Appl. 23(3), 313–335 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brönnimann, H., Goodrich, M.T.: Almost optimal set covers in finite VC-dimension. Discrete Comput. Geom. 14(4), 463–479 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  8. Busto, D., Evans, W.S., Kirkpatrick, D.G.: On k-guarding polygons. In: Proceedings of the 25th Canadian Conference on Computational Geometry (CCCG’13), Waterloo, Ontario (2013)

  9. Chekuri, C., Clarkson, K.L., Har-Peled, S.: On the set multicover problem in geometric settings. ACM Trans. Algorithms 9(1), 9:1–9:17 (2012)

    Article  MathSciNet  Google Scholar 

  10. Chvátal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res. 4(3), 233–235 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chvátal, V.: A combinatorial theorem in plane geometry. J. Comb. Theory, Ser. B 18(1), 39–41 (1975)

    Article  MATH  Google Scholar 

  12. Clarkson, K.L.: Algorithms for polytope covering and approximation. Algorithms and Data Structures (WADS 1993). Lecture Notes in Computer Science, vol. 709, pp. 246–252. Springer, Berlin (1993)

    Google Scholar 

  13. Deshpande, A., Kim, Taejung, Demaine, Erik D., Sarma, Sanjay E.: A pseudopolynomial time \({O}(\log n)\)-approximation algorithm for art gallery problems. In: Proceedings of the 10th Workshop on Algorithms and Data Structures (WADS 2007). Lecture Notes in Computer Science, vol. 4619, pp. 163–174. Halifax, Nova Scotia (2007)

  14. Eidenbenz, S.: Inapproximability results for guarding polygons without holes. Lecture Notes in Computer Science, vol. 1533, pp. 427–436. Springer, Berlin (1998)

    Google Scholar 

  15. Eidenbenz, S., Stamm, C., Widmayer, P.: Inapproximability results for guarding polygons and terrains. Algorithmica 31(1), 79–113 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Even, G., Rawitz, D., Shahar, S.M.: Hitting sets when the VC-dimension is small. Inf. Process. Lett. 95(2), 358–362 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Feige, U.: A threshold of \(\ln n\) for approximating set cover. J. ACM 45(4), 634–652 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Fisk, S.: A short proof of Chvátal’s Watchman Theorem. J. Comb. Theory, Ser. B 24(3), 374 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  19. Fusco, G., Gupta, H.: \(\varepsilon \)-net approach to sensor k-coverage. EURASIP J. Wirel. Commun. Netw. 2010, 2 (2010)

    Article  Google Scholar 

  20. Garey, M., Johnson, D.: Computers and Intractibility: A Guide to the Theory of NP-Completeness. W.H. Freeman and Co., New York (1979)

    MATH  Google Scholar 

  21. Ghosh, S.: Approximation algorithms for art gallery problems. In: Proceedings of Canadian Information Processing Society Congress, pp. 429–434 (1987)

  22. Ghosh, S.: Approximation algorithms for art gallery problems in polygons. Discrete Appl. Math. 158(7), 718–722 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Gilbers, A., Klein, R.: A new upper bound for the VC-dimension of visibility regions. Comput. Geom. Theory Appl. 47(1), 61–74 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kalai, G., Matoušek, J.: Guarding galleries where every point sees a large area. Isr. J. Math. 101(1), 125–139 (1997)

    Article  MATH  Google Scholar 

  25. King, J.: Fast vertex guarding for polygons with and without holes. Comput. Geom. 46(3), 219–231 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  26. King, J., Kirkpatrick, D.G.: Improved approximation for guarding simple galleries from the perimeter. Discrete Comput. Geom. 46(2), 252–269 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  27. King, J., Krohn, E.: Terrain guarding is NP-hard. SIAM J. Comput. 40(5), 1316–1339 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  28. Kirkpatrick, D.: Guarding galleries with no nooks. In: Proceedings of the 12th Canadian Conference on Computational Geometry (CCCG’00). Fredericton, New Brunswick, pp. 43–46 (2000)

  29. Komlós, J., Pach, J., Woeginger, G.: Almost tight bounds for epsilon-nets. Discrete Comput. Geom. 7(1), 163–173 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  30. Lee, D., Lin, A.: Computational complexity of art gallery problems. IEEE Trans. Inf. Theory 32(2), 276–282 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  31. Long, P.M.: Using the pseudo-dimension to analyze approximation algorithms for integer programming. Algorithms and Data Structures (WADS 2001). Lecture Notes in Computer Science, vol. 2125, pp. 26–37. Springer, Berlin (2001)

    Google Scholar 

  32. Mehlhorn, K., Sack, J., Zaks, J.: Note on the paper “K-vertex guarding simple polygons” [Computational Geometry 42(4), May 2009, pp. 352–361]. Comput. Geom. 42(6–7), 722 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  33. O’Rourke, J.: Art Gallery Theorems and Algorithms. Oxford University Press, New York (1987). http://cs.smith.edu/~orourke/books/ArtGalleryTheorems/art.html. Accessed 26 Jan 2012

  34. O’Rourke, J., Supowit, K.J.: Some NP-hard polygon decomposition problems. IEEE Trans. Inf. Theory 29(2), 181–189 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  35. Plotkin, S.A., Shmoys, D.B., Tardos, É.: Fast approximation algorithms for fractional packing and covering problems. Math. Oper. Res. 20(2), 257–301 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  36. Raz, R., Safra, S.: A sub-constant error-probability low-degree-test and a sub-constant error-probability PCP characterization of NP. In: Proceedings of 29th ACM Symposium on Theory of Computing, El Paso, pp. 475–484 (1997)

  37. Salleh, I.: K-vertex guarding simple polygons. Comput. Geom. 42(4), 352–361 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  38. Urrutia, J.: Art gallery and illumination problems. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 973–1027. North-Holland Publishing Co., Amsterdam (2000)

    Chapter  Google Scholar 

  39. Valtr, P.: Guarding galleries where no point sees a small area. Isr. J. Math. 104(1), 1–16 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  40. Young, N.E.: Randomized rounding without solving the linear program. In: Proceedings of the 6th Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics, Philadelphia, pp. 170–178 (1995)

Download references

Acknowledgments

The author acknowledges the generous support of the Natural Sciences and Engineering Research Council of Canada. The many helpful discussions with Daniel Busto and William Evans concerning multi-guarding problems are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Kirkpatrick.

Appendix: Remark on the Hierarchical Fragmentation Construction of King and Kirkpatrick [26]

Appendix: Remark on the Hierarchical Fragmentation Construction of King and Kirkpatrick [26]

A very similar hierarchical fragmentation (differing from ours only in the definition of \(t\), and in the level-1 fragmentation factor \(b_1\)) was described by King and Kirkpatrick [26] in developing their approximation bound for optimal \(1\)-guarding. Unfortunately, the choice of \(\alpha \) (which, together with \(t\) determines \(b_1\)) given in their Eq. (3) does not always guarantee that their Eq. (1) holds. In particular, consider the case when \(1/ \varepsilon = 2^{2^{t-1}+1}\) (so \(t = \lceil \log \log (1/ \varepsilon ) \rceil \), as specified). In this case, \(\alpha = 1/ (4t 2^{2^{t-1}+1-t})\) and so \(t \alpha 2^{2^t}\) (the bound on \(|S_{HF}|\), the size of their guard set) is essentially \(2^t \cdot 1/ \varepsilon \), which is \(\Theta ( (1/ \varepsilon ) \log (1/ \varepsilon ))\), not \(O((1/ \varepsilon ) \log \log (1/ \varepsilon ))\), as claimed in their Eq. (1).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirkpatrick, D. An \(O(\lg \lg {\mathrm {OPT}})\)-Approximation Algorithm for Multi-guarding Galleries. Discrete Comput Geom 53, 327–343 (2015). https://doi.org/10.1007/s00454-014-9656-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-014-9656-8

Keywords

Navigation