Skip to main content
Log in

Tangent Estimation from Point Samples

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

Let \(\mathcal{M}\) be an m-dimensional smooth compact manifold embedded in \(\mathbb {R}^d\), where m is a constant known to us. Suppose that a dense set of points are sampled from \(\mathcal{M}\) according to a Poisson process with an unknown parameter. Let p be any sample point, let \(\varrho \) be the local feature size at p, and let \(\varrho \varepsilon \) be the distance from p to the \((n+1)\)th nearest sample point for some n between \(\left( {\begin{array}{c}m+1\\ 2\end{array}}\right) + 1\) and \(\left( {\begin{array}{c}d+1\\ 2\end{array}}\right) \). Using the n sample points nearest to p, we can estimate the tangent space at p and it holds with probability \(1 - O(n^{-1/3})\) that the angular error is \(O(\varepsilon ^2)\). The running time is bounded by the time to compute the thin SVD of an \(n \times \left( {\begin{array}{c}d+1\\ 2\end{array}}\right) \) matrix and the full SVD of an \(n \times d\) matrix, which is usually \(O(d^2n^2)\) in practice. We implemented the algorithm and experimentally verified its effectiveness on both noiseless and noisy data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Since our method reduces to solving an eigenvalue problem, an appropriate thresholding of the eigenvalues should determine m. We do not pursue automatic dimension detection in this article in order to focus on the tangent estimation. We comment on the determination of m further in the conclusion.

References

  1. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. Adv. Neural Inf. Process. Syst. 14, 585–591 (2002)

    Google Scholar 

  2. Belkin, M., Sun, J., Wang, Y.: Constructing Laplace operator from point clouds in \(R^d\). In: Proceedings of the 20th Annual ACM–SIAM Symposium on Discrete Algorithms, pp. 1021–1040 (2009)

  3. Boissonnat, J.-D., Ghosh, A.: Manifold reconstruction using tangential Delaunay complexes. In: Proceedings of the 26th Annual Symposium on Computational Geometry, pp. 324–333 (2010)

  4. Boissonnat, J.-D., Guibas, L.J., Oudot, S.Y.: Manifold reconstruction in arbitrary dimensions using witness complexes. Discrete Comput. Geom. 42, 37–70 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boxma, O.J., Yechiali, U.: Poisson Processes, ordinary and compound. In: Ruggeri, F., Kenett, R.S., Faltin, F.W. (eds.) Encyclopedia of Statistics in Quality and Reliability. Wiley, New York (2007)

    Google Scholar 

  6. Carter, K.M., Raich, R., Hero, A.O.: On local intrinsic dimension estimation and its applications. IEEE Trans. Signal Process. 58, 650–663 (2010)

    Article  MathSciNet  Google Scholar 

  7. Chan, T.F.: An improved algorithm for computing the singular value decomposition. ACM Trans. Mathe. Softw. 8, 72–83 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cheng, S.-W., Chiu, M-K.: Dimension detection via slivers. In: Proceedings of the 20th Annual ACM–SIAM Symposium on Discrete Algorithms, pp. 1001–1010 (2009)

  9. Cheng, S.-W., Dey, T.K., Ramos, E.A.: Manifold reconstruction from point samples. In: Proceedings of the 16th Annual ACM–SIAM Symposium on Discrete Algorithms, pp. 1018–1027 (2005)

  10. Cheng, S.-W., Wang, Y., Wu, Z.: Provable dimension detection using principal component analysis. Int. J. Comput. Geom. Appl. 18, 414–440 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dey, T.K., Giesen, J., Goswami, S., Zhao, W.: Shape dimension and approximation from samples. Discrete Comput. Geom. 29, 419–434 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Eisenstat, S.C., Ipsen, I.C.F.: Relative perturbation bounds for eigenspaces and singular vector subspaces. In: Proceedings of the 5th SIAM Conference on Applied Linear Algebra, pp. 62–66 (1994)

  13. Feingold, D.G., Varga, R.S.: Block diagonally dominant matrices and generalizations of the Gershgorin circle theorem. Pac. J. Math. 12, 1241–1250 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gashler, M., Martinez, T.: Tangent space guided intelligent neighbor finding. In: Proceedings of International Joint Conference on Neural Networks, pp. 2617–2624 (2011)

  15. Giesen, J., Wagner, U.: Shape dimension and intrinsic metric from samples of manifolds with high codimension. Discrete Comput. Geom. 32, 245–267 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Golub, G.H., Reinsch, C.: Singular value decomposition and least square solutions. In: Wilkinson, J.H., Reinsch, C. (eds.) Handbook for Automatic Computation, II, Linear Algebra. Springer, New York (1971)

    Google Scholar 

  17. Golub, G.H., van Loan, C.F.: Matrix Computations. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  18. Gong, D., Zhao, X., Medioni, G.: Robust multiple manifolds structure learning. In: Proceedings of the International Conference on Machine Learning (2012)

  19. Gradshtein, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Academic Press, New York (1994)

    Google Scholar 

  20. Hein, M., Audibert, J.-Y.: Intrinsic dimensionality estimation of submanifolds in Euclidean space. In: Proceedings of the 22nd International Conference on Machine Learning, 289–296 (2005)

  21. Kégl, B.: Intrinsic dimension estimation using packing numbers. Adv. Neural Inf. Process. Syst. 14, 681–688 (2003)

    Google Scholar 

  22. Lang, S.: Calculus of Several Variables. Springer, New York (1987)

    Book  MATH  Google Scholar 

  23. Le Gall, F.: Faster algorithms for rectangular matrix multiplication. In: Proceedings of the 53rd IEEE Annual Symposium on Foundations of Computer Science, pp. 514–523 (2012)

  24. Levina, E., Bickel, P.J.: Maximum likelihood estimation of intrinsic dimension. Adv. Neural Inf. Process. Syst. 17, 777–784 (2005)

    Google Scholar 

  25. Little, A.V., Maggioni, M., Rosasco, L.: Multiscale geometric methods for data sets I: multiscale SVD, noise and curvature. Computer Science and Artificial Intelligence Laboratory Technical Report, MIT-CSAIL-TR-2012-029, CBCL-310, 8 Sept 2012

  26. massoud Farahmand, A., Szepesvári, C., Audibert, J.-Y.: Manifold-adaptive dimension estimation. In: Proceedings of the 24th International Conference on Machine Learning, pp. 265–272 (2007)

  27. Morgan, F.: Riemannian Geometry: A Beginner’s Guide. A. K. Peters, Wellesley, MA (1998)

    MATH  Google Scholar 

  28. Nascimento, J.C., Silva, J.G.: Manifold learning for object tracking with multiple motion dynamics. In: Proceedings of ECCV 2010, Part III. LNCS, vol. 6313 pp. 172–185 (2010)

  29. Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  30. Schölkopf, B., Smola, A., Müller, K.-R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10, 1299–1319 (1998)

    Article  Google Scholar 

  31. Taubin, G.: Estimation of planar curves, surfaces and nonplanar space curves defined by implicit equations, with applications to edge and range image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 13, 1115–1138 (1991)

    Article  Google Scholar 

  32. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

We thank the anonymous referees for their helpful comments and useful advice. Research supported by the Research Grant Council, Hong Kong, China (Project No. 612109). Part of the work was done while Chiu was at HKUST. Man-Kwun Chiu: JST, ERATO, Kawarabayashi Large Graph Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siu-Wing Cheng.

Additional information

Editor in Charge: Kenneth Clarkson

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, SW., Chiu, MK. Tangent Estimation from Point Samples. Discrete Comput Geom 56, 505–557 (2016). https://doi.org/10.1007/s00454-016-9809-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-016-9809-z

Keywords

Mathematics Subject Classification

Navigation