Skip to main content
Log in

Discrete Stratified Morse Theory

Algorithms and A User’s Guide

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

Inspired by the works of Forman on discrete Morse theory, which is a combinatorial adaptation to cell complexes of classical Morse theory on manifolds, we introduce a discrete analogue of the stratified Morse theory of Goresky and MacPherson. We describe the basics of this theory and prove fundamental theorems relating the topology of a general simplicial complex with the critical simplices of a discrete stratified Morse function on the complex. We also provide an algorithm that constructs a discrete stratified Morse function out of an arbitrary function defined on a finite simplicial complex; this is different from simply constructing a discrete Morse function on such a complex. We then give simple examples to convey the utility of our theory. Finally, we relate our theory with the classical stratified Morse theory in terms of triangulated Whitney stratified spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability statement

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Allili, M., Kaczynski, T., Landi, C.: Reducing complexes in multidimensional persistent homology theory. J. Symb. Comput. 78, 61–75 (2017)

    Article  MathSciNet  Google Scholar 

  2. Batko, B., Kaczynski, T., Mrozek, M., Wanner, T.: Linking combinatorial and classical dynamics: Conley index and Morse decompositions. Found. Comput. Math. 20(5), 967–1012 (2020)

    Article  MathSciNet  Google Scholar 

  3. Bendich, P.: Analyzing Stratified Spaces Using Persistent Versions of Intersection and Local Homology. PhD thesis, Duke University (2008)

  4. Benedetti, B.: Discrete Morse theory for manifolds with boundary. Trans. Am. Math. Soc. 364(12), 6631–6670 (2012)

    Article  MathSciNet  Google Scholar 

  5. Benedetti, B.: Smoothing discrete Morse theory. Ann. Sc. Norm. Super. Pisa Cl. Sci. 16(2), 335–368 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Brown, A., Wang, B.: Sheaf-theoretic stratification learning from geometric and topological perspectives. Discrete Comput. Geom. 65(4), 1166–1198 (2021)

    Article  MathSciNet  Google Scholar 

  7. Cazals, F., Mueller, Ch., Robert, Ch., Roth, A.: Towards Morse theory for point cloud data (2020). https://hal.archives-ouvertes.fr/hal-02988939

  8. Delgado-Friedrichs, O., Robins, V., Sheppard, A.: Skeletonization and partitioning of digital images using discrete Morse theory. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 654–666 (2015)

    Article  Google Scholar 

  9. Dlotko, P., Wagner, H.: Computing homology and persistent homology using iterated Morse decomposition (2012). arXiv:1210.1429

  10. Edelsbrunner, H., Harer, J.L.: Computational Topology: An Introduction. American Mathematical Society, Providence (2010)

    MATH  Google Scholar 

  11. Edelsbrunner, H., Harer, J., Natarajan, V., Pascucci, V.: Morse–Smale complexes for piecewise linear \(3\)-manifolds. In: 19th Annual ACM Symposium on Computational Geometry (San Diego 2003), pp. 361–370. ACM, New York (2003)

  12. Edelsbrunner, H., Harer, J., Zomorodian, A.: Hierarchical Morse-Smale complexes for piecewise linear \(2\)-manifolds. Discrete Comput. Geom. 30(1), 87–107 (2003)

    Article  MathSciNet  Google Scholar 

  13. Forman, R.: Morse theory for cell complexes. Adv. Math. 134(1), 90–145 (1998)

    Article  MathSciNet  Google Scholar 

  14. Forman, R.: Combinatorial differential topology and geometry. In: New Perspectives in Algebraic Combinatorics (Berkeley 1996–97). Math. Sci. Res. Inst. Publ., vol. 38, pp. 177–206. Cambridge University Press, Cambridge (1999)

  15. Forman, R.: A user’s guide to discrete Morse theory. Sém. Lothar. Combin. 48, # B48c (2002)

  16. Friedman, G.: Stratified fibrations and the intersection homology of the regular neighborhoods of bottom strata. Topol. Appl. 134(2), 69–109 (2003)

    Article  MathSciNet  Google Scholar 

  17. Goresky, R.M.: Triangulation of stratified objects. Proc. Am. Math. Soc. 72(1), 193–200 (1978)

    Article  MathSciNet  Google Scholar 

  18. Goresky, M., MacPherson, R.: Stratified Morse Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 14. Springer, Berlin (1988)

  19. Günther, D., Reininghaus, J., Seidel, H.-P., Weinkauf, T.: Notes on the simplification of the Morse–Smale complex. In: Topological Methods in Data Analysis and Visualization III (Davis 2013), pp. 135–150. Springer, Cham (2014)

  20. Gyulassy, A.: Combinatorial Construction of Morse–Smale Complexes for Data Analysis and Visualization. PhD thesis, University of California, Davis (2008)

  21. Gyulassy, A., Bremer, P.-T., Hamann, B., Pascucci, V.: A practical approach to Morse-Smale complex computation: scalability and generality. IEEE Trans. Vis. Comput. Gr. 14(6), 1619–1626 (2008)

    Article  Google Scholar 

  22. Gyulassy, A., Knoll, A., Lau, K.Ch., Wang, B., Bremer, P.-T., Papka, M.E., Curtiss, L.A., Pascucci, V.: Interstitial and interlayer ion diffusion geometry extraction in graphitic nanosphere battery materials. IEEE Trans. Vis. Comput. Gr. 22(1), 916–925 (2015)

  23. Gyulassy, A., Knoll, A., Lau, K.Ch., Wang, B., Bremer, P.-T., Papka, M.E., Curtiss, L.A., Pascucci, V.: Morse–Smale analysis of ion diffusion in ab initio battery materials simulations. In: Topological Methods in Data Analysis and Visualization IV (Annweiler 2015), pp. 135–149. Springer, Cham (2017)

  24. Johnson, F.E.A.: On the triangulation of stratified sets and singular varieties. Trans. Am. Math. Soc. 275(1), 333–343 (1983)

    MathSciNet  MATH  Google Scholar 

  25. King, H., Knudson, K., Mramor, N.: Generating discrete Morse functions from point data. Exp. Math. 14(4), 435–444 (2005)

    Article  MathSciNet  Google Scholar 

  26. Knudson, K.P.: Morse Theory: Smooth and Discrete. World Scientific, Hackensack (2015)

    Book  Google Scholar 

  27. Knudson, K., Wang, B.: Discrete stratified Morse theory: a user’s guide. In: 34th International Symposium on Computational Geometry (Budapest 2018). Leibniz International Proceedings in Informatics, vol. 54, # 14. Leibniz-Zent. Inform., Wadern (2018)

  28. Mather, J.: Notes on topological stability. Bull. Am. Math. Soc. 49(4), 475–506 (2012)

    Article  MathSciNet  Google Scholar 

  29. Matsumoto, Y.: An Introduction to Morse Theory. Translations of Mathematical Monographs, vol. 208. Iwanami Series in Modern Mathematics. American Mathematical Society, Providence (2002)

  30. McTague, C.: Stratified Morse theory (2005). https://www.mctague.org/carl/maths/stratified-morse-theory/stratified-morse-theory.pdf

  31. Mischaikow, K., Nanda, V.: Morse theory for filtrations and efficient computation of persistent homology. Discrete Comput. Geom. 50(2), 330–353 (2013)

    Article  MathSciNet  Google Scholar 

  32. Munkres, J.R.: Elements of Algebraic Topology. Addison-Wesley, Menlo Park (1984)

    MATH  Google Scholar 

  33. Nanda, V.: Local cohomology and stratification. Found. Comput. Math. 20(2), 195–222 (2020)

    Article  MathSciNet  Google Scholar 

  34. Reininghaus, J.: Computational Discrete Morse Theory. PhD thesis, Zuse Institut Berlin (2012)

  35. Reininghaus, J., Kasten, J., Weinkauf, T., Hotz, I.: Efficient computation of combinatorial feature flow fields. IEEE Trans. Vis. Comput. Gr. 18(9), 1563–1573 (2011)

    Article  Google Scholar 

  36. Robins, V., Wood, P.J., Sheppard, A.P.: Theory and algorithms for constructing discrete Morse complexes from grayscale digital images. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1646–1658 (2011)

    Article  Google Scholar 

  37. Zhou, Y., Knudson, K., Wang, B.: Visual demo of discrete stratified Morse theory. In: 36th International Symposium on Computational Geometry (2020). Leibniz International Proceedings in Informatics, vol. 164, # 82. Leibniz-Zent. Inform., Wadern (2020)

Download references

Acknowledgements

Bei Wang is supported in part by NSF IIS-1513616 and NSF DBI-1661375. We would like to thank Vin de Silva and Davide Lofano for their valuable comments regarding the definition of stratified simplicial complexes. We are also grateful to the anonymous referees for carefully reading this manuscript and providing insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bei Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Editor in Charge: Kenneth Clarkson

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

NSF IIS-1513616 and DBI-1661375.

Appendix A: Preliminaries on Classical and Stratified Morse Theory

Appendix A: Preliminaries on Classical and Stratified Morse Theory

For completeness, we include here a review of the basics of (stratified) Morse theory. Given a topological space \({X}\), studying the relation between the critical points of a Morse function (or a stratified Morse function) on \({X}\) and the topology of \({X}\) requires more care in the smooth setting in comparison with the discrete setting. Most of our review originates from the seminal work of Goresky and MacPherson [18].

1.1 A.1 Classical Morse Theory

Let \({X}\) be a compact, differentiable d-manifold and \(f:{X}\rightarrow {{\mathbb {R}}}\) a smooth real-valued function on \({X}\). For a given value \(a \in {{\mathbb {R}}}\), let \({X}_a = f^{-1}(-\infty ,a] = \{x \in {X}\mid f(x) \le a\}\) denote the sublevel set. Morse theory studies the topological changes in \({X}_a\) as a varies.

Morse functions. A point \(x \in {X}\) is critical if the derivative at x equals zero. The value of f at a critical point is a critical value. All other points are regular points and all other values are regular values of f. A critical point x is non-degenerate if the Hessian, the matrix of second partial derivatives at the point, is invertible. The Morse index of the non-degenerate critical point x is the number of negative eigenvalues in the Hessian matrix, denoted as \(\lambda (x)\).

Definition A.1

\(f:{X}\rightarrow {{\mathbb {R}}}\) is a Morse function if all critical points are non-degenerate and its values at the critical points are distinct.

Results. We now review two fundamental results of classical Morse theory (CMT).

Theorem A.1

(CMT Theorem A; [18, p. 4], [10, p. 129])   Let \(f:{X}\rightarrow {{\mathbb {R}}}\) be a differentiable function on a compact smooth manifold \({X}\). Let \(a< b\) be real numbers such that \(f^{-1}[a,b]\) is compact and contains no critical points of f. Then \({X}_a\) is diffeomorphic to \({X}_b\).

On the other hand, let f be a Morse function on \({X}\). We consider two regular values \(a < b\) such that \(f^{-1}[a,b]\) is compact but contains one critical point u of f, with index \(\lambda \). Then \({X}_b\) has the homotopy type of \({X}_a\) with a \(\lambda \)-cell (or \(\lambda \)-handle, the smooth analogue of a \(\lambda \)-cell) attached along its boundary ([18, p. 5] and [10, p. 129]). We define Morse data for f at a critical point u in \({X}\) to be a pair of topological spaces (AB) where \(B \subset A\) with the property that as a real value c increases from a to b (by crossing the critical value f(u)), the change in \({X}_c\) can be described by gluing in A along B [18, p. 4]. Morse data measures the topological change in \({X}_c\) as c crosses critical value f(u). We have the second fundamental result of Morse theory,

Theorem A.2

(CMT Theorem B; [18, p. 5], [29, p. 77])   Let f be a Morse function on \({X}\). Consider two regular values \(a < b\) where \(f^{-1}[a,b]\) is compact and contains one critical point u of f, with index \(\lambda \). Then \({X}_b\) is diffeomorphic to the space \({X}_a \cup _{B} A\), where \((A,B) = (D^{\lambda } \times D^{d-\lambda }, ({\partial }D^{\lambda }) \times D^{d-\lambda })\) is the Morse data, d is the dimension of \({X}\), \(\lambda \) is the Morse index of u, \(D^{k}\) denotes the closed k-dimensional disk, and \({\partial }D^{k}\) is its boundary.

1.2 A.2 Stratified Morse Theory

Morse theory can be generalized to certain singular spaces, in particular to Whitney stratified spaces [18, 30].

Stratified Morse function. Let \({X}\) be a compact d-dimensional Whitney stratified space embedded in some smooth manifold \({{\mathbb {M}}}\). A function on \({X}\) is smooth if it is the restriction to \({X}\) of a smooth function on \({{\mathbb {M}}}\). Let \({\bar{f}}:{{\mathbb {M}}}\rightarrow {{\mathbb {R}}}\) be a smooth function. The restriction f of \({\bar{f}}\) to \({X}\) is critical at a point \(x \in {X}\) iff it is critical when restricted to the particular manifold piece which contains x [3]. A critical value of f is its value at a critical point.

Definition A.2

f is a stratified Morse function if ([3] and [18, p. 13]):

  1. 1.

    labelC1 All critical values of f are distinct.

  2. 2.

    At each critical point u of f, the restriction of f to the stratum S containing u is non-degenerate.

  3. 3.

    The differential of f at a critical point \(u \in S\) does not annihilate (destroy) any limit of tangent spaces to any stratum \(S'\) other than the stratum S containing u.

Conditions 1 and 2 imply that f is a Morse function when restricted to each stratum in the classical sense. Condition 2 is a non-degeneracy requirement in the tangential directions to S. Condition 3 is a non-degeneracy requirement in the directions normal to S [18, p. 13].

Results. Now we state the two fundamental results of stratified Morse theory.

Theorem A.3

(SMT Theorem A; [18, p. 6])   Let \({X}\) be a Whitney stratified space and \(f:{X}\rightarrow {{\mathbb {R}}}\) a stratified Morse function. Suppose the interval [ab] contains no critical values of f. Then \({X}_a\) is diffeomorphic to \({X}_b\).

Theorem A.4

(SMT Theorem B; [18, p. 8 and p. 64])   Let f be a stratified Morse function on a compact Whitney stratified space \({X}\). Consider two regular values \(a < b\) such that \(f^{-1}[a,b]\) is compact but contains one critical point u of f. Then \({X}_b\) is diffeomorphic to the space \({X}_a \cup _B A\), where the Morse data (AB) is the product of the normal Morse data at u and the tangential Morse data at u.

To define tangential and normal Morse data, we have the following setup. Let \({X}\) be a Whitney stratified subset of some smooth manifold \({{\mathbb {M}}}\). Let \(f:{X}\rightarrow {{\mathbb {R}}}\) be a stratified Morse function with a critical point u. Let S denote the stratum of \({X}\) which contains the critical point u. Let N be a normal slice at u, that is, \(N={X}\cap N' \cap B^{{{\mathbb {M}}}}_{\delta }(u)\), where \(N'\) is a sub-manifold of \({{\mathbb {M}}}\) which is traverse to each stratum of \({X}\), intersects the stratum S in a single point u, and satisfies \(\mathrm dim\,{S}+\mathrm dim\,{N'}=\mathrm dim\,{{{\mathbb {M}}}}\). \(B_\delta ^{{{\mathbb {M}}}}(u)\) is a closed ball of radius \(\delta \) in \({{\mathbb {M}}}\) based on a Riemannian metric on \({{\mathbb {M}}}\). By Whitney’s condition, if \(\delta \) is sufficiently small then \({\partial }B^{{{\mathbb {M}}}}_{\delta }(u)\) will be transverse to each stratum of \({X}\), and to each stratum in \({X}\cap N'\), fix such a \(\delta > 0\) [18, p. 40].

The tangential Morse data for f at u is the pair

$$\begin{aligned} (P, Q) = (D^{\lambda } \times D^{s-\lambda }, ({\partial }D^{\lambda }) \times D^{s - \lambda }), \end{aligned}$$

where \(\lambda \) is the (classical) Morse index of f restricted to S, f|S, at u, and s is the dimensional of stratum S [18, p. 65]. The normal Morse data is the pair

$$\begin{aligned} (J, K) = (N \cap f^{-1}[v-\varepsilon , v+\varepsilon ], N \cap f^{-1}(v-\varepsilon )), \end{aligned}$$

where \(f(u)=v\) and \(\varepsilon >0\) is chosen such that f|N has no critical values other than v in the interval \([v-\varepsilon ,v+\varepsilon ]\) [18, p. 65]. The Morse data is the topological product of the tangential and the normal Morse data, where the product of pairs is defined as \((A, B) = (P, Q) \times (J,K) =(P \times J , P \times K \cup Q \times J)\).

Theorem A.4 corresponds to the Main Theorem of [18, p. 65], which has the following homotopy consequences. Suppose \({X}\) is a Whitney stratified space, \(f:{X}\rightarrow {{\mathbb {R}}}\) is a proper stratified Morse function, and [ab] contains no critical values except for a single isolated critical value \(v\in (a,b)\) which corresponds to a critic point p in some stratum \({{\mathbb {S}}}\) of \({X}\). \(\lambda \) is the Morse index of \(f|_{{{\mathbb {S}}}}\) at the point p.

Theorem A.5

(SMT homotopy consequences; [18, Sect. 3.12, p. 68])   The space \({X}_{b}\) has the homotopy type of a space which is obtained from \({X}_{a}\) by attaching the pair

$$\begin{aligned} (D^{\lambda }, {\partial }D^{\lambda }) \times (\mathrm {cone}(l^{-}), l^{-}). \end{aligned}$$

Here, \(l^{-}\) is the lower half link of \({X}\) where \(l^{-} = N \cap f^{-1}(v-\varepsilon ) \cap B_{\delta }^{{{\mathbb {M}}}}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knudson, K., Wang, B. Discrete Stratified Morse Theory. Discrete Comput Geom 67, 1023–1052 (2022). https://doi.org/10.1007/s00454-022-00372-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-022-00372-1

Keywords

Mathematics Subject Classification

Navigation