Skip to main content
Log in

Two-point concentration in random geometric graphs

  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

A random geometric graph G n is constructed by taking vertices X 1,…,X n ∈ℝd at random (i.i.d. according to some probability distribution ν with a bounded density function) and including an edge between X i and X j if ‖X i -X j ‖ < r where r = r(n) > 0. We prove a conjecture of Penrose ([14]) stating that when r=r(n) is chosen such that nr d = o(lnn) then the probability distribution of the clique number ω(G n ) becomes concentrated on two consecutive integers and we show that the same holds for a number of other graph parameters including the chromatic number χ(G n ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Achlioptas and A. Naor: The two possible values of the chromatic number of a random graph, Ann. of Math. (2) 162(3) (2005), 1335–1351.

    Article  MATH  MathSciNet  Google Scholar 

  2. N. Alon and M. Krivelevich: The concentration of the chromatic number of random graphs, Combinatorica 17(3) (1997), 303–313.

    Article  MATH  MathSciNet  Google Scholar 

  3. C. W. Anderson, S. G. Coles and J. Hüsler: Maxima of Poisson-like variables and related triangular arrays, Ann. Appl. Probab. 7(4) (1997), 953–971.

    Article  MATH  MathSciNet  Google Scholar 

  4. B. Bollob’as: The distribution of the maximum degree of a random graph, Discrete Math. 32(2) (1980), 201–203.

    Article  MathSciNet  Google Scholar 

  5. J. Glaz and N. Balakrishan: Scan Statistics and Applications, Birkhäuser, Boston, 1999.

    MATH  Google Scholar 

  6. J. Glaz, J. Naus and S. Wallenstein: Scan statistics, Springer, New York, 2001.

    MATH  Google Scholar 

  7. T. Łuczak: A note on the sharp concentration of the chromatic number of random graphs, Combinatorica 11(3) (1991), 295–297.

    Article  MATH  MathSciNet  Google Scholar 

  8. C. L. Mallows: An inequality involving multinomial probabilities, Biometrika 55(2) (1968), 422–424.

    Article  MATH  MathSciNet  Google Scholar 

  9. M. Månsson: Poisson approximation in connection with clustering of random points, Ann. Appl. Probab. 9(2) (1999), 465–492.

    Article  MATH  MathSciNet  Google Scholar 

  10. D. W. Matula: The employee party problem, Not. A. M. S. 19 (1972), A–382.

    Google Scholar 

  11. C. J. H. McDiarmid: Random channel assignment in the plane, Random Structures Algorithms 22(2) (2003), 187–212.

    Article  MATH  MathSciNet  Google Scholar 

  12. C. J. H. McDiarmid and T. Müller: On the chromatic number of random geometric graphs, submitted.

  13. M. D. Penrose: Focusing of the scan statistic and geometric clique number, Adv. in Appl. Probab. 34(4) (2002), 739–753.

    Article  MATH  MathSciNet  Google Scholar 

  14. M. D. Penrose: Random Geometric Graphs, Oxford University Press, Oxford, 2003.

    Book  MATH  Google Scholar 

  15. S. M. Ross: Probability models in computer science, Harcourt/Academic Press, 2002.

  16. W. Rudin: Real and Complex Analysis, McGraw-Hill, New York, 1987.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Müller.

Additional information

The author was partially supported by EPSRC, the Department of Statistics, Bekkerla-Bastide fonds, Dr. Hendrik Muller’s Vaderlandsch fonds, and Prins Bernhard Cultuurfonds.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, T. Two-point concentration in random geometric graphs. Combinatorica 28, 529–545 (2008). https://doi.org/10.1007/s00493-008-2283-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-008-2283-3

Mathematics Subject Classification (2000)

Navigation