Skip to main content
Log in

On K s -free subgraphs in K s+k -free graphs and vertex Folkman numbers

  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

Extending the problem of determining Ramsey numbers Erdős and Rogers introduced the following function. For given integers 2 ≤ s < t let f s,t (n) = min{max{|S|: SV (H) and H[S] contains no K s }}, where the minimum is taken over all K t -free graphs H of order n. This function attracted a considerable amount of attention but despite that, the gap between the lower and upper bounds is still fairly wide. For example, when t=s+1, the best bounds have been of the form Ω(n 1/2+o(1)) ≤ f s,s+1(n) ≤ O(n 1−ɛ(s)), where ɛ(s) tends to zero as s tends to infinity. In this paper we improve the upper bound by showing that f s,s+1(n) ≤ O(n 2/3). Moreover, we show that for every ɛ > 0 and sufficiently large integers 1 ≪ ks, Ω(n 1/2−ɛ) ≤ f s,s+k (n) ≤ O(n 1/2+ɛ. In addition, we also discuss some connections between the function f s,t and vertex Folkman numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Alon and M. Krivelevich: Constructive bounds for a Ramsey-type problem, Graphs Combin. 13 (1997), 217–225.

    MathSciNet  MATH  Google Scholar 

  2. B. Bollobás and H. R. Hind: Graphs without large triangle free subgraphs, Discrete Math. 87(2) (1991), 119–131.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Brown and V. Rödl: A Ramsey type problem concerning vertex colourings, J. Combin. Theory Ser. B 52(1) (1991), 45–52.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Dudek and V. Rödl: An almost quadratic bound on vertex Folkman numbers, J. Combin. Theory Ser. B 100(2) (2010), 132–140.

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Dudek and V. Rödl: New upper bound on vertex Folkman numbers, in: LATIN 2008 (E. Laber et al., eds.), Lecture Notes in Comput. Sci., vol. 4957, Springer, Berlin, 2008, pp. 473–478.

    Chapter  Google Scholar 

  6. N. Eaton and V. Rödl: A canonical Ramsey theorem, Random Structures Algorithms 3(4) (1992), 427–444.

    Article  MathSciNet  MATH  Google Scholar 

  7. P. Erdős and C. A. Rogers: The construction of certain graphs, Canad. J. Math. 14 (1962), 702–707.

    Article  MathSciNet  Google Scholar 

  8. J. Folkman: Graphs with monochromatic complete subgraphs in every edge coloring, SIAM J. Appl. Math. 18 (1970), 19–24.

    Article  MathSciNet  MATH  Google Scholar 

  9. C. Godsil and G. Royle: Algebraic Graph Theory, Springer, New York, 2001.

    Book  MATH  Google Scholar 

  10. N. Kolev and N. Nenov: New upper bound for a class of vertex Folkman numbers, Electron. J. Combin. 13 (2006), #R14.

    MathSciNet  Google Scholar 

  11. M. Krivelevich: Bounding Ramsey numbers through large deviation inequalities, Random Structures Algorithms 7 (1995), 145–155.

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Krivelevich: K s-free graphs without large K r-free subgraphs, Combin. Probab. Comput. 3 (1994), 349–354.

    Article  MathSciNet  MATH  Google Scholar 

  13. T. Łuczak, A. Ruciński and S. Urbański: On minimal vertex Folkman graphs, Discrete Math. 236 (2001), 245–262.

    Article  MathSciNet  MATH  Google Scholar 

  14. N. Nenov: On the triangle vertex Folkman numbers, Discrete Math. 271 (2003), 327–334.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Nešetřil and V. Rödl: The Ramsey property for graphs with forbidden complete subgraphs, J. Combin. Theory Ser. B 20(3) (1976), 243–249.

    Article  MATH  Google Scholar 

  16. B. Sudakov: Large K r-free subgraphs in K s-free graphs and some other Ramseytype problems, Random Structures Algorithms 26 (2005), 253–265.

    Article  MathSciNet  MATH  Google Scholar 

  17. B. Sudakov: A new lower bound for a Ramsey-type problem, Combinatorica 25(4) (2005), 487–498.

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Thas: Generalized polygons, in: F. Buekenhout (ed.), Handbook on Incidence Geometry, North-Holland, Amsterdam, 1995, pp. 383–431.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Dudek.

Additional information

Research partially supported by NSF grant DMS 0800070.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dudek, A., Rödl, V. On K s -free subgraphs in K s+k -free graphs and vertex Folkman numbers. Combinatorica 31, 39–53 (2011). https://doi.org/10.1007/s00493-011-2626-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-011-2626-3

Mathematics Subject Classification (2000)

Navigation