Skip to main content
Log in

Evolving quantum circuits at the gate level with a hybrid quantum-inspired evolutionary algorithm

  • Original Paper
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

This paper proposes an approach to evolve quantum circuits at the gate level, based on a hybrid quantum-inspired evolutionary algorithm. This approach encodes quantum gates as integers and combines the cost and correctness of quantum circuits into the fitness function. A fast algorithm of matrix multiplication with Kronecker product has been proposed to speed up the calculation of matrix multiplication in individuals evaluation. This algorithm is shown to be better than the known best algorithm for matrix multiplication when a certain condition holds. The approach of evolving quantum circuits is validated by some experiments and the effects of some parameters are investigated. And finally, some features of the approach are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barenco A, Bennett C, Cleve R, DiVincenzo DP, Margolus N, Shor P, Sleator T, Smolin JA and Weifurter H (1995). Elementary gates for quantum computation. Phys Rev A 52: 3457–3467

    Article  Google Scholar 

  • Cirac JI and Zoller P (1995). Quantum computations with cold trapped ions. Phys Rev Lett 74: 4091–4094

    Article  Google Scholar 

  • Coello CAC (2005) An introduction to evolutionary algorithms and their applications. In: Corchado FFR, Larios-Rosillo V, Unger H (eds) ISSADS, vol 3563 of Lecture Notes in Computer Science. Springer, Berlin, pp 425–442

  • Deutsch D (1989). Quantum computational networks. Proc R Soc Lond A 425: 73–90

    Article  MATH  MathSciNet  Google Scholar 

  • Giraldi GA, Portugal R, Thess RN (2004) Genetic algorithms and quantum computation. arXiv: cs.NE/0403003v1, 4

  • Holland JH (1992) Adaptation in natural and artificial systems. MIT Press, Cambridge

  • Horn R and Johnson C (1994). Topics in matrix analysis. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Iwama K, Kambayashi Y, Yamashita S (2002) Transformation rules for designing cnot-based quantum circuits. In: Proceedings 39th Design Automation Conference (DAC’02), pp 419–424

  • Jones JA, Hansen RH and Mosca M (1998). Quantum logic gates and nuclear magnetic resonance pulse sequences. J Magn Reson 135: 353–360

    Article  Google Scholar 

  • Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. MIT Press, Cambridge

  • Leier A, Banzhaf W (2003) Evolving Hogg’s quantum algorithm using linear-tree GP. In: Genetic and evolutionary computation, GECCO-2003 (Chicago, 2003), vol 2723 of LNCS. Springer, Berlin, pp 390–400

  • Lukac M, Perkowski M (2002) Evolving quantum circuits using genetic algorithm. In: Proceedings the 2002 NASA/DoD conference on evolvable hardware, pp 177–185

  • Lukac M, Perkowski M, Goi H, Pivtoraiko M, Yu CH, Chung K, Jeech H, Kim B-G and Kim Y-D (2003). Evolutionary approach to quantum and reversible circuits synthesis. Artif Intell Rev 20(3–4): 361–417

    Article  MATH  Google Scholar 

  • Maslov D, Dueck GW and Miller DM (2005). Toffoli network synthesis with templates. IEEE Trans Comput Aided Des Integr Circuits Syst 24(6): 807–817

    Article  Google Scholar 

  • Maslov D, Young C, Miller DM, Dueck GW (2005) Quantum circuit simplification using templates. In: Proceedings the 2005 design, automation and test in Europe conference and exhibition, vol 2, pp 1208–1213

  • Massey P, Clark JA, Stepney S(2004) Evolving quantum circuits and programs through genetic programming. In: Genetic and evolutionary computation conference: GECCO 2004, Seattle, USA, June 2004, vol 3103 of LNCS. Springer, Berlin, pp 569–580

  • Massey P, Clark JA, Stepney S (2005) Evolution of a human-competitive quantum fourier transform algorithm using genetic programming. In: Proceedings of the 2005 conference on genetic and evolutionary computation (GECCO’05) (New York, NY, USA, 2005), ACM Press, New York, pp 1657–1663

  • Meter RV and Itoh KM (2005). Fast quantum modular exponentiation. Phys Rev A 71: 052320

    Article  MathSciNet  Google Scholar 

  • Miller DM, Maslov D and Dueck G (2006). Synthesis of quantum multiple-valued circuits. J Multiple-Valued Logic Soft Comput 12(5–6): 431–450

    MATH  MathSciNet  Google Scholar 

  • Nielsen MA and Chuang IL (2000). Quantum computation and quantum information. Cambridge University Press, New York

    MATH  Google Scholar 

  • Perkowski M et al (2003) A hierarchical approach to computer aided design of quantum circuits. In: Proceedings 6th international symposium on representations and methodology of future computing technology, pp 201–209

  • Reid T (2005) On the evolutionary design of quantum circuits. Master’s thesis, Waterloo, Ontario, Canada

  • Rothlauf F (2006). Representations for genetic and evolutionary algorithms, 2nd edn. Springer, Berlin

    Google Scholar 

  • Rubinstein RIP (2001) Evolving quantum circuits using genetic programming. In: CEC2001, vol 1, pp 144–151

  • Schack R and Caves CM (1999). Classical model for bulk-ensemble nmr quantum computation. Phys Rev A 60(6): 4354–4362

    Article  Google Scholar 

  • Shende VV, Markov IL and Bullock SS (2004). Minimal universal two-qubit controlled-not-based circuits. Phys Rev A 69: 062321

    Article  Google Scholar 

  • Spector L, Barnum H, Bernstein H, Swamy N (1999) Quantum computing applications of genetic programming. In: Spector L, O’Reilly U-M, Langdon W, Angeline P (eds) Advances in genetic programming, vol 3. MIT Press, Cambridge, chap. 7, pp 135–160

  • Spector L, Barnum H, Bernstein HJ, Swamy N (1999) Finding a better-than-classical quantum and/or algorithm using genetic programming. In: CEC1999, vol 3, pp 2239–2246

  • Williams CP, Gray AG (1999) Automated design of quantum circuits. In: Quantum computing and communications: first NASA conference (QCQC’98), vol 1509 of LNCS. Springer, Berlin, pp 113–125

  • Yabuki T, Iba H (2000) Genetic algorithms and quantum circuit design, evolving a simpler teleportation circuit. In: 2000 Genetic and evolutionary computation conference, pp 421–425

  • Yang Q (2006) The research of a hybrid quantum-inspired evolutionary algorithm. Master’s thesis, Wuhan University, China

  • Yang Q, Zhong S and Ding S (2006). A simple quantum inspired evolutionary algorithm and its application to numerical optimization problems. J Wuhan Univ (Nat Sci Ed) 52(1): 21–24

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, S., Jin, Z. & Yang, Q. Evolving quantum circuits at the gate level with a hybrid quantum-inspired evolutionary algorithm. Soft Comput 12, 1059–1072 (2008). https://doi.org/10.1007/s00500-007-0273-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-007-0273-9

Keywords

Navigation