Skip to main content
Log in

Self-organising swarm (SOSwarm)

  • Original Paper
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

This paper introduces a novel version of the particle swarm optimisation (PSO) algorithm which we call self-organising swarm SOSwarm. SOSwarm can be used for unsupervised learning. In the algorithm, input vectors are projected into a lower-dimensional map space producing a visual representation of the input data in a manner similar to a self-organising map (SOM). In SOSwarm, particles react to input data during the learning process by modifying their velocities using an adaptation of the PSO velocity update function. SOSwarm is successfully applied to ten benchmark problems drawn from the UCI Machine Learning repository. The paper also demonstrates how the canonical SOM can be explored within the PSO paradigm. Illustrating this linkage between the heretofore distinct literatures of SOM and PSO opens up several new avenues of research for the development of novel self-organising algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brabazon A, O’Neill M (2006) Biologically inspired algorithms for financial modelling. Springer, Berlin

    MATH  Google Scholar 

  • Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to artificial systems. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Chung F-L, Wang S, Deng Z, Shu C, Hu D (2006) Clustering analysis of gene expression data based on semi-supervised visual clustering algorithm. Soft Comput. 10(11): 981–993

    Article  MATH  Google Scholar 

  • De Falco I, Tarantino E, Delia Cioppa A, Gagliardi F (2005) A novel grammar-based genetic programming approach to clustering. In: Proceedings of the 2005 ACM symposium on applied computing, Santa Fe, New Mexico, pp 928–932

  • De Falco I, Tarantino E, Delia Cioppa A, Fontanella F (2006) An innovative approach to genetic programmingf́9based clustering. Adv Soft Comput 55–64

  • Dempster A, Laird N, Rubin D (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B 39(1): 1–38

    MATH  MathSciNet  Google Scholar 

  • Deneubourg J, Gross S, Franks N, Sendova-Franks A, Detrain C, Chretien L (1991) The dynamics of collective sorting robot-like ants and ant-like robots. In: Meyer J, Wilson S(eds) Proceedings of 1st conference on simulation of adaptive behavior: from animals to animats (SAB 90). MIT Press, Cambridge, pp 356–365

    Google Scholar 

  • Dunn J (1973) A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J Cybern 3: 32–57

    Article  MATH  MathSciNet  Google Scholar 

  • Franti P, Kivijarvi J, Kaukoranta T, Nevalainen O (1997) Genetic algorithms for large scale clustering problems. Comput J 40: 547–554

    Article  Google Scholar 

  • Garai G, Chaudhuri B (2004) A novel genetic algorithm for automatic clustering. Pattern Recognit Lett 25(2): 173–187

    Article  Google Scholar 

  • Gurney K (1997) An introduction to neural networks. University College London Press, London

    Google Scholar 

  • Hettich S, Blake CL, Merz CJ (1998) UCI repository of machine learning databases. http://www.ics.uci.edu/~mlearn/MLRepository.htm. University of California, Department of Information and Computer Science, Irvine, CA

  • Jiang K, Liao Q-M, Xiong Y (2006) A novel white blood cell segmentation scheme based on feature space clustering. Soft Comput 10(1): 12–19

    Article  Google Scholar 

  • Johnson S (1967) Hierarchical clustering schemes. Psychometrika 2: 241–254

    Article  Google Scholar 

  • Karakasidis T, Georgiou D (2004) Partitioning elements of the Periodic Table via fuzzy clustering technique. Soft Comput 8(3): 231–236

    MATH  Google Scholar 

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks, pp 1942–1948

  • Kennedy J, Eberhart R, Shi Y (2001) Swarm intelligence. Morgan Kauffman, San Mateo

    Google Scholar 

  • Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biol Cybern 43: 59–69

    Article  MATH  MathSciNet  Google Scholar 

  • Kohonen T (1990) The self-organizing map. Proc IEEE 78(9): 1464–1480

    Article  Google Scholar 

  • Kohonen T (1998) The SOM methodology. In: Deboeck G, Kohonen T Visual explorations in finance with self-organizing maps. Springer, Berlin

  • Lumer E, Faieta B (1994) Diversity and adaptation in populations of clustering ants. In: Proceedings of third international conference on simulation of adaptive behaviour, pp 501–508

  • MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of 5th Berkeley symposium on mathematical statistics and probability, vol 1. University of California Press, Berkeley, pp 281–297

  • Maulik U, Bandyopadhyay S (2000) Genetic algorithm-based clustering technique. Pattern Recognit 33: 1455–1465

    Article  Google Scholar 

  • Omran M, Engelbrecht AP, Salman A (2005) Particle swarm optimization method for image clustering. Int J Pattern Recognit Artif Intell 19(3): 297–322

    Article  Google Scholar 

  • Omran MGH, Salman A, Engelbrecht AP (2006) Dynamic clustering using particle swarm optimization with application in image segmentation. Pattern Anal Appl 8(4): 332–344

    Article  MathSciNet  Google Scholar 

  • O’Neill M, Ryan C (2003) Grammatical evolution: evolutionary automatic programming in an arbitrary language. Kluwer Academic Publishers, Boston Computation 5(4): 349–358

    Google Scholar 

  • O’Neill M, Brabazon A (2006) Grammatical swarm: the generation of programs by social programming. Nat Comput 5: 443–462

    Article  MATH  MathSciNet  Google Scholar 

  • O’Neill M, Brabazon A, Adley C (2004) The automatic generation of programs for classification using grammatical swarm. In: Proceedings of the congress on evolutionary computation CEC 2004. IEEE Press, Portland, pp 104–110

  • O’Neill M, Brabazon A (2004) Grammatical swarm. In: Proceedings of the genetic and evolutionary computation conference GECCO 2004. Springer, Seattle, pp 163–174

  • Rahimi-Vahed AR, Mirghorbani SM, Rabbani M (2007) A new particle swarm algorithm for a multi-objective mixed-model assembly line sequencing problem. Soft Comput 11(10): 997–1012

    Article  Google Scholar 

  • Smith M, Bull L (2005) Genetic programming with a genetic algorithm for feature construction and selection. Genet Program Evol Mach 6(3): 265–281

    Article  Google Scholar 

  • Tseng L, Yang S (2001) A genetic approach to the automatic clustering problem. Pattern Recognit 34: 415–424

    Article  MATH  Google Scholar 

  • Wang P, Liu Z-Q, Yang S-Q (2007) Investigation on unsupervised clustering algorithms for video shot categorization. Soft Comput 11(4): 355–360

    Article  MATH  MathSciNet  Google Scholar 

  • Xiao X, Dow E, Eberhart R, Miled Z, Oppelt R (2003) Gene-clustering using self-organizing maps and particle swarm optimization. In: Proceedings of the IEEE international parallel and distributed processing symposium (IPDPS), 22–26 April 2003. IEEE Press, Nice

  • Xiao X, Dow E, Eberhart R, Miled Z, Oppelt R (2004) A hybrid self-organizing maps and particle swarm optimization approach. Concur Comput Pract Exp 16(9): 895–915

    Article  Google Scholar 

  • Yue X, Abraham A, Chi Z-X, Hao Y-Y, Mo H (2007) Artificial immune system inspired behavior-based anti-spam filter. Soft Comput. 11(8): 729–740

    Article  Google Scholar 

  • Yang C, Yi Z (2008) Document clustering using locality preserving indexing and support vector machines. Soft Comput (published online 17 Oct 2007, in press)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael O’Neill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Neill, M., Brabazon, A. Self-organising swarm (SOSwarm). Soft Comput 12, 1073–1080 (2008). https://doi.org/10.1007/s00500-007-0274-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-007-0274-8

Keywords

Navigation