Skip to main content
Log in

Stabilization of nonlinear time-delay systems with input saturation via anti-windup fuzzy design

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

This investigation considers stability analysis and control design for nonlinear time-delay systems subject to input saturation. An anti-windup fuzzy control approach, based on fuzzy modeling of nonlinear systems, is developed to deal with the problems of stabilization of the closed-loop system and enlargement of the domain of attraction. To facilitate the designing work, the nonlinearity of saturation is first characterized by sector conditions, which provide a basis for analysis and synthesis of the anti-windup fuzzy control scheme. Then, the Lyapunov–Krasovskii delay-independent and delay-dependent functional approaches are applied to establish sufficient conditions that ensure convergence of all admissible initial states within the domain of attraction. These conditions are formulated as a convex optimization problem with constraints provided by a set of linear matrix inequalities. Finally, numeric examples are given to validate the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Cao YY, Frank PM (2000) Analysis and synthesis of nonlinear time-delay systems via fuzzy control approach. IEEE Trans Fuzzy Syst 8(2):200–211

    Article  Google Scholar 

  • Cao YY, Lin Z (2003) Robust stability analysis and fuzzy-scheduling control for nonlinear systems subject to actuator saturation. IEEE Trans Fuzzy Syst 11(1):57–67

    Article  Google Scholar 

  • Cao YY, Lin Z, Hu T (2002) Stability analysis of linear time-delay systems subject to input saturation. IEEE Trans Circuit Syst I 49(2):233–240

    Article  MathSciNet  Google Scholar 

  • Chen B, Liu X (2005) Delay-dependent robust H control for T–S fuzzy systems with time delay. IEEE Trans Fuzzy Syst 13(4):544–556

    Google Scholar 

  • Gomes da Silva JM Jr, Tarbouriech S (2005) Antiwindup design with guaranteed regions of stability: an LMI approach. IEEE Trans Autom Control 50(1):106–111

    Article  MathSciNet  Google Scholar 

  • Guan XP, Chen CL (2004) Delay-dependent guaranteed cost control for T–S fuzzy systems with time delays. IEEE Trans Fuzzy Systems 12(2):236–249

    Article  MATH  Google Scholar 

  • Hale JK (1977) Theory of functional differential equations. Springer, New York

    MATH  Google Scholar 

  • Hu T, Lin Z, Chen BM (2002) An analysis and design method for linear systems subject to actuator saturation and disturbance. Automatica 38:351–359

    Article  MATH  Google Scholar 

  • Kapoor N, Teel AR, Doutidis P (1998) An anti-windup design for linear systems with input saturation. Automatica (34):559–574

  • Kokame H, Kobayashi H, Mori T (1998) Robust H performance for linear delay differential systems with time-varying uncertainties. IEEE Trans Autom Control 43(2):223–226

    Article  MATH  MathSciNet  Google Scholar 

  • Mulder EF, Kothare MV, Morari M (2001) Multivariable anti-windup controller synthesis using linear matrix inequalities. Automatica 37:1407–1416

    Article  MATH  Google Scholar 

  • Nguyen T, Jabbari F (2000) Output feedback controllers for disturbance attenuation with actuator amplitude and rate saturation. Automatica 36:1339–1346

    Article  MATH  MathSciNet  Google Scholar 

  • Park JH (2005) On design of dynamic output feedback controller for GCS of large-scale systems with delays in interconnections: LMI optimization approach. Appl Math Comput 161:423–432

    Article  MATH  MathSciNet  Google Scholar 

  • Tarbouriech S, Gomes da Silva JM Jr, Garcia G (2004) Delay-dependent anti-windup strategy for linear systems with saturating inputs and delayed outputs. Int J Robust Nonlinear Control 14:665–682

    Article  MATH  MathSciNet  Google Scholar 

  • Tarbouriech S, Queinnec I, Garcia C (2006) Stability region enlargement through anti-windup strategy for linear systems with dynamics restricted actuator. Int J Syst Sci 37:79–90

    Article  MATH  MathSciNet  Google Scholar 

  • Tian E, Peng C (2006) Delay-dependent stability analysis and synthesis of uncertain T–S fuzzy systems with time-varying delay. Fuzzy Sets Syst 157:544–559

    Article  MATH  MathSciNet  Google Scholar 

  • Trinh H, Aldeen M (1994) On the stability of linear systems with delayed perturbations. IEEE Trans Autom Control 39(9):1948–1951

    Article  MATH  MathSciNet  Google Scholar 

  • Wu F, Lin Z, Zheng Q (2007) Output feedback stabilization of linear systems with actuator saturation. IEEE Trans Autom Control 52(1):122–128

    Article  MathSciNet  Google Scholar 

  • Ying H (1998) General SISO Takagi-Sugeno fuzzy systems with linear rule consequent are universal approximators. IEEE Trans Fuzzy Systems 6(4):582–587

    Article  Google Scholar 

  • Yoneyama J (2007) Robust stability and stabilization for uncertain Takagi-Sugeno fuzzy time-delay systems. Fuzzy Sets and Systems 158:115–134

    Google Scholar 

  • Yue D (2004) Robust stabilization of uncertain systems with unknown input dealy. Automatica (40):331–336

  • Yue D, Han QL (2005) Delayed feedback control of uncertain systems with time-varying input delay. Automatica (41):233–240

Download references

Acknowledgments

This work was supported by the National Science Council under grant NSC97-2221-E-150-044.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen-Sheng Ting.

Appendix

Appendix

Consider the following time-delay fuzzy systems:

$$ {\text{fuzzy}}\;{\text{plant}}\left\{ {\begin{array}{*{20}c} {\dot{x}(t) = \sum\limits_{i = 1}^{r} {\mu_{i} } (\bar{A}_{1i} x(t) + \bar{A}_{2i} x(t - h(t)) + \bar{B}_{i} u(t)),} \hfill \\ {y(t) = \sum\limits_{i = 1}^{r} {\mu_{i} } \bar{C}_{i} x(t),} \hfill \\ \end{array} } \right. $$
(43)
$$ {\text{fuzzy}}\;{\text{controller}}\left\{ {\begin{array}{*{20}c} {\dot{x}_{c} (t) = \sum\limits_{i = 1}^{r} {\mu_{i} (A_{ci} x_{c} (t) + B_{ci} y(t))} ,} \hfill \\ {u(t) = \sum\limits_{i = 1}^{r} {\mu_{i} } C_{ci} x_{c} (t),} \hfill \\ \end{array} } \right. $$
(44)

where \( x(t) \in R^{n} ,\;x_{c} (t) \in R^{n} ,\;u(t) \in R^{P} ,\;y(t) \in R^{m} ,\;\bar{A}_{1i} ,\;\bar{A}_{2i} ,\;\bar{B}_{i} , \) and \( \bar{C}_{j} \) are system matrices of appropriate dimensions, and \( A{}_{ci}, \, B_{ci} , \) and \( C_{ci} \) are constant matrices to be determined. Define \( \xi (t) = \left[ {\begin{array}{*{20}c} {x^{T} (t)} & {x_{c}^{T} (t)} \\ \end{array} } \right]^{T} . \) The augmented system can be written as

$$ \begin{aligned} \dot{\xi }(t) & = \sum\limits_{i = 1}^{r} {\sum\limits_{j = 1}^{r} {\mu_{i} } } \mu_{j} (A_{ij} \xi (t) + A_{di} \xi (t - h(t))), \\ A_{ij} & = \left[ {\begin{array}{*{20}c} {\bar{A}_{1i} } & {\bar{B}_{i} C_{cj} } \\ {B_{ci} \bar{C}_{j} } & {A_{ci} } \\ \end{array} } \right],\quad \, A_{di} = \left[ {\begin{array}{*{20}c} {\bar{A}_{2i} } & 0 \\ 0 & 0 \\ \end{array} } \right]. \\ \end{aligned} $$
(45)

To stabilize the system, this study applies delay-independent analysis to the design of dynamic fuzzy controller. Choose the Lyapunov–Krasovskii functional as

$$ V(\xi ) = \xi^{T} (t)P\xi (t) + {\frac{1}{1 - \beta }}\int\limits_{ \, t - h(t)}^{ t} {\xi^{T} (\sigma )S\xi (\sigma ){\text{d}}\sigma ,} $$
(46)

where P and S are positive definite matrices. Differentiating \( V(\xi ) \) with respect to time yields

$$ \begin{aligned} \dot{V}(\xi_{t} ) & = 2\xi^{T} P\dot{\xi } + \xi^{T} S\xi /(1 - \beta ) - (1 - \dot{h})\xi^{T} (t - h)S\xi (t - h)/(1 - \beta ) \\ \, & \quad \le 2\xi^{T} P\dot{\xi } + \xi^{T} S\xi /(1 - \beta ) - \xi^{T} (t - h)S\xi (t - h). \\ \end{aligned} $$
(47)

Substituting Eq. 45 into Eq. 47 gives

$$ \begin{aligned} \dot{V}(\xi ) & \le \sum\limits_{i = 1}^{r} {\mu_{i}^{2} } \xi^{T} \left( {A_{ii}^{T} P + PA_{ii} + {\frac{1}{1 - \beta }}S + PA_{di} S^{ - 1} A_{di}^{T} P} \right)\xi \\ & \quad + \sum\limits_{i < j} {\mu_{i} } \mu_{j} \xi^{T} ((A_{ij} + A_{ji} )^{T} P + P(A_{ij} + A_{ji} ) + {\frac{2}{1 - \beta }}S \\ & \quad + P(A_{di} + A_{dj} )(2S)^{ - 1} (A_{di} + A_{dj} )^{T} P)\xi . \\ \end{aligned} $$
(48)

Consequently, the stability condition can be written as

$$ \begin{aligned} \bar{M}_{ii} & = \left[ {\begin{array}{*{20}c} {A_{ii}^{T} P + PA_{ii} + S/(1 - \beta )} & {PA_{di} } \\ * & { - S} \\ \end{array} } \right] < 0,\quad {\text{for}}\;i = 1,2, \ldots ,r; \\ \bar{M}_{ij} & = \left[ {\begin{array}{*{20}c} {(A_{ij} + A_{ji} )^{T} P + P(A_{ij} + A_{ji} ) + 2S/(1 - \beta )} & {P(A_{di} + A_{dj} )} \\ * & { - 2S} \\ \end{array} } \right] < 0,\quad {\text{for}}\,1 \le i < j \le r. \\ \end{aligned} $$
(49)

Let the partition and the inverse matrices of P be

$$ P = \left[ {\begin{array}{*{20}c} {P_{11} } & {P_{12} } \\ {P_{12}^{T} } & {P_{22} } \\ \end{array} } \right],\quad P^{ - 1} = \left[ {\begin{array}{*{20}c} {X_{11} } & {X_{12} } \\ {X_{12}^{T} } & {X_{22} } \\ \end{array} } \right] = X. $$
(50)

Since \( P^{ - 1} P = I, \) it follows that \( X_{12} P_{12}^{T} = I - X_{11} P_{11} . \) Define

$$ F_{1} = \left[ {\begin{array}{*{20}c} {X_{11} } & I \\ {X_{12}^{T} } & 0 \\ \end{array} } \right],\quad F_{2} = \left[ {\begin{array}{*{20}c} I & {P_{11} } \\ 0 & {P_{12}^{T} } \\ \end{array} } \right]. $$
(51)

Then, it follows that \( PF_{1} = F_{2} \) and

$$ \, F_{1}^{T} PF_{1} = \left[ {\begin{array}{*{20}c} {X_{11} } & I \\ I & {P_{11} } \\ \end{array} } \right] > 0. $$
(52)

Pre- and post-multiplying \( \bar{M}_{ii} \) by the matrices \( {\text{diag}}(F_{1}^{T} , \, I) \) and \( {\text{diag}}(F_{1} , \, I) \) lead to

$$ \left[ {\begin{array}{*{20}c} {F_{1}^{T} A_{ii}^{T} F_{2} + F_{2}^{T} A_{ii} F_{1} + F_{1}^{T} SF_{1} /(1 - \beta )} & {F_{2}^{T} A_{di} } \\ * & { - S} \\ \end{array} } \right] < 0. $$
(53)

Choose \( S = {\text{diag}}(S_{1} , \, S_{2} ). \) By proper manipulation, the condition (53) is equivalent to

$$ \left[ {\begin{array}{*{20}c} {(1,1)} & {(1,2)} & {(1,3)} & 0 \\ * & {(2,2)} & {(2,3)} & 0 \\ * & * & { - S_{1} } & 0 \\ * & * & * & { - S_{2} } \\ \end{array} } \right] < 0, $$
(54)

where

$$ \begin{aligned} (1,1) & = X_{11} \bar{A}_{1i}^{T} + X_{12} C_{ci}^{T} \bar{B}_{i}^{T} + \bar{A}_{1i} X_{11} + \bar{B}_{i} C_{ci} X_{12}^{T} \\ & \quad + (X_{11} S_{1} X_{11} + X_{12} S_{2} X_{12}^{T} )/(1 - \beta ), \\ (1,2) & = X_{11} (\bar{A}_{1i}^{T} P_{11} + \bar{C}_{i}^{T} B_{ci}^{T} P_{12}^{T} ) + X_{12} (C_{ci}^{T} \bar{B}_{i}^{T} P_{11} + A_{ci}^{T} P_{12}^{T} ) + \bar{A}_{1i} \\ & \quad + X_{11} S_{1} /(1 - \beta ), \\ (2,2) & = \bar{A}_{1i}^{T} P_{11} + \bar{C}_{i}^{T} B_{ci}^{T} P_{12}^{T} + P_{11} \bar{A}_{1i} + P_{12} B_{ci} \bar{C}_{i} + S_{1} /(1 - \beta ), \\ (1,3) & = \bar{A}_{2i} , \\ (2,3) & = P_{11} \bar{A}_{2i} . \\ \end{aligned} $$
(55)

Define the following variables:

$$ \begin{aligned} \hat{A}_{i} & = X_{11} \bar{A}_{1i}^{T} P_{11} + X_{12} A_{ci}^{T} P_{12}^{T} + \hat{C}_{i}^{T} \bar{B}_{i}^{T} P_{11} + X_{11} \bar{C}_{i}^{T} \hat{B}_{i}^{T} , \\ \hat{B}_{i} & = P_{12} B_{ci} ,\quad \hat{C}_{i} = C_{ci} X_{12}^{T} , \, \\ \hat{S}_{1} & = X_{11} S_{1} ,\quad \hat{S}{}_{2} = X_{12} S_{2} X_{12}^{T} /(1 - \beta ). \\ \end{aligned} $$
(56)

By using Schur complement, Eq. 54 can be rewritten as

$$ \left[ {\begin{array}{*{20}c} {\Upomega_{i1} } & {\hat{S}_{1} } & {\Upomega_{i2} } & {\bar{A}_{2i} } & 0 \\ * & { - (1 - \beta )S_{1} } & 0 & 0 & 0 \\ * & * & {\Upomega_{i3} } & {P_{11} \bar{A}_{2i} } & 0 \\ * & * & * & { - S_{1} } & 0 \\ * & * & * & * & { - S_{2} } \\ \end{array} } \right] < 0,\quad {\text{ for}}\; \, i = 1,2, \ldots ,r, $$
(57)

where

$$ \begin{aligned} \Upomega_{i1} & = \bar{A}_{1i} X_{11} + X_{11} \bar{A}_{1i}^{T} + \bar{B}_{i} \hat{C}_{i} + \hat{C}_{i}^{T} \bar{B}_{i}^{T} + \hat{S}_{2} , \\ \Upomega_{i2} & = \bar{A}_{1i} + \hat{A}_{i} + \hat{S}_{1} /(1 - \beta ), \\ \Upomega_{i3} & = P_{11} \bar{A}_{1i} + \bar{A}_{1i}^{P} P_{11} + \bar{C}_{i}^{T} \hat{B}_{i}^{T} + \hat{B}_{i} \bar{C}_{i} + S_{1} /(1 - \beta ). \\ \end{aligned} $$
(58)

The same calculation is performed to deal with the inequality of \( \bar{M}_{ij} . \) That is, computing \( {\text{diag}}(F_{1}^{T} , \, I) \times \bar{M}_{ij} \times {\text{diag}}(F_{1} , \, I) \) results in

$$ \left[ {\begin{array}{*{20}c} {\overline{(1, \, 1)} } & {\overline{(1, \, 2)} } & {(\bar{A}_{2i} + \bar{A}_{2j} )} & 0 \\ * & {\overline{(2, \, 2)} } & {P{}_{11}(\bar{A}_{2i} + \bar{A}_{2j} )} & 0 \\ * & * & { - 2S_{1} } & 0 \\ * & * & * & { - 2S_{2} } \\ \end{array} } \right] < 0, $$
(59)

where

$$ \begin{aligned} \overline{(1,1)} & = X_{11} (\bar{A}_{1i} + \bar{A}_{1j} )^{T} + (\bar{A}_{1i} + \bar{A}_{1j} )X_{11} + X_{12} (\bar{B}_{i} C_{cj} + \bar{B}_{j} C_{ci} )^{T} \\ & \quad + (\bar{B}_{i} C_{cj} + \bar{B}_{j} C_{ci} )X_{12}^{T} + 2X_{11} S_{1} X_{11} /(1 - \beta ) + 2X_{12} S_{2} X_{12}^{T} /(1 - \beta ), \\ \overline{(1,2)} & = X_{11} (\bar{A}_{1i} + \bar{A}_{1j} )^{T} P_{11} + X_{11} (B_{ci} \bar{C}_{j} + B_{cj} \bar{C}_{i} )^{T} P_{12}^{T} \\ & \quad + X_{12} (\bar{B}_{i} C_{cj} + \bar{B}_{j} C_{ci} )^{T} P_{11} + X_{12} (A_{ci} + A_{cj} )^{T} P_{12}^{T} + \bar{A}_{1i} + \bar{A}_{1j} \\ & \quad + 2X_{11} S_{1} /(1 - \beta ), \\ \overline{(1,3)} & = (\bar{A}_{1i} + \bar{A}_{1j} )^{T} P_{11} + P_{11} (\bar{A}_{1i} + \bar{A}_{1j} ) + (B_{ci} \bar{C}_{j} + B_{cj} \bar{C}_{i} )^{T} P_{12}^{T} \\ & \quad + P_{12} (B_{ci} \bar{C}_{j} + B_{cj} \bar{C}_{i} ) + 2S_{1} /(1 - \beta ). \\ \end{aligned} $$
(60)

In the simulation, it is noticed that \( \bar{C}_{i} = \bar{C}_{j} \) and \( \bar{B}_{i} = \bar{B}_{j} . \) Due to these conditions, Eq. 59 can be modified as

$$ \left[ {\begin{array}{*{20}c} {\Upxi_{ij}^{1} } & {\hat{S}_{1} } & {\Upxi_{ij}^{2} } & {(\bar{A}_{2i} + \bar{A}_{2j} )} & 0 \\ * & {0.5(1 - \beta )S_{1} } & 0 & 0 & 0 \\ * & * & {\Upxi_{ij}^{3} } & {P_{11} (\bar{A}_{2i} + \bar{A}_{2j} )} & 0 \\ * & * & * & { - 2S_{1} } & 0 \\ * & * & * & * & { - 2S_{2} } \\ \end{array} } \right] < 0, \, 1 \le i < j \le r, $$
(61)

where

$$ \begin{aligned} \Upxi_{ij}^{1} & = X_{11} (\bar{A}_{1i} + \bar{A}_{1j} )^{T} + (\bar{A}_{1i} + \bar{A}_{1j} )X_{11} + \hat{C}_{j}^{T} \bar{B}_{i}^{T} + \hat{C}_{i}^{T} \bar{B}_{j}^{T} + \bar{B}_{i} \hat{C}_{j} \\ & \quad + \bar{B}_{j} \hat{C}_{i} + 2\hat{S}_{2} , \\ \Upxi_{ij}^{2} & = \hat{A}_{i} + \hat{A}_{j} + \bar{A}_{1i} + \bar{A}_{1j} + 2\hat{S}_{1} /(1 - \beta ), \\ \Upxi_{ij}^{3} & = P_{11} (\bar{A}_{1i} + \bar{A}_{1j} ) + (\bar{A}_{1i} + \bar{A}_{1j} )^{T} P_{11} + \bar{C}_{j}^{T} \hat{B}_{i}^{T} + \bar{C}_{i}^{T} \hat{B}_{j}^{T} + \hat{B}_{i} \bar{C}_{j} \\ & \quad + B_{j} \bar{C}_{i} + 2S_{1} /(1 - \beta ). \\ \end{aligned} $$
(62)

In summary, given the solution of the LMIs (52), (57), and (61), the dynamic fuzzy controller (44) is constructed via the following procedures:

  1. 1.

    Solve \( X_{12} \) from \( \hat{S}_{2} \) as defined in Eq. 56.

  2. 2.

    Compute \( P_{12} \) using the relation \( X_{12} P_{12}^{T} = I - X_{11} P_{11} . \)

  3. 3.

    Determine \( B_{ci} ,C_{ci} , \) and \( A_{ci} \) sequentially from the obtained solutions of \( X_{11} ,P_{11} ,X_{12} , \) and \( P_{12} . \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ting, CS., Liu, CS. Stabilization of nonlinear time-delay systems with input saturation via anti-windup fuzzy design. Soft Comput 15, 877–888 (2011). https://doi.org/10.1007/s00500-010-0555-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-010-0555-5

Keywords

Navigation