Skip to main content
Log in

Three modified versions of differential evolution algorithm for continuous optimization

  • Original Paper
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Differential evolution (DE) is one simple and effective evolutionary algorithm (EA) for global optimization. In this paper, three modified versions of the DE to improve its performance, to repair its defect in accurate converging to individual optimal point and to compensate the limited amount of search moves of original DE are proposed. In the first modified version called bidirectional differential evolution (BDE), to generate a new trial point, is used from the bidirectional optimization concept, and in the second modified version called shuffled differential evolution (SDE), population such as shuffled frog leaping (SFL) algorithm is divided in to several memeplexes and each memeplex is improved by the DE algorithm. Finally, in the third modified version of DE called shuffled bidirectional differential evolution (SBDE) to improve each memeplex is used from the proposed BDE algorithm. Three proposed modified versions are applied on two types of DE and six obtained algorithms are compared with original DE and SFL algorithms. Experiments on continuous benchmark functions and non-parametric analysis of obtained results demonstrate that applying bidirectional concept only improves one type of the DE. But the SDE and the SBDE have a better success rate and higher solution precision than original DE and SFL, whereas those are more time consuming on some functions. In a later part of the comparative experiments, a comparison of the proposed algorithms with some modern DE and the other EAs reported in the literature confirms a better or at least comparable performance of our proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ali MM (2007) Differential evolution with preferential crossover. Eur J Oper Res 181:1137–1147

    Article  MATH  Google Scholar 

  • Babu BV, Munawar SA (2007) Differential evolution strategies for optimal design of shell-and-tube heat exchangers. Chem Eng Sci 62:3720–3739

    Article  Google Scholar 

  • Brest J, Greiner S, Boskovic B, Mernik M, Zumer V (2006) Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans Evolut Comput 10:646–657

    Article  Google Scholar 

  • Brest J, Boskovic B, Greiner S, Zumer V, Maucec MS (2007) Performance comparison of self-adaptive and adaptive differential evolution algorithms. Soft Comput 11:617–629

    Article  MATH  Google Scholar 

  • Brest J, Zamuda A, Boskovi B, Maucec MS, Zumer V (2008) High-dimensional real-parameter optimization using self-adaptive differential evolution algorithm with population size reduction. In: IEEE world congress on computational intelligence. Evolutionary Computation, 2008. CEC 2008, pp 2032–2039

  • Bui LT, Shan Y, Qi F, Abbass HA (2005) Comparing two versions of differential evolution in real parameter optimization. In: The 2005 IEEE congress on evolutionary computation, CEC 2005

  • Caponio A, Neri F, Tirronen V (2009) Super-fit control adaptation in memetic differential evolution frameworks. Soft Comput 13:811–831

    Article  Google Scholar 

  • Chang Y-P, Low C (2007) An ant direction hybrid differential evolution heuristic for the large scale passive harmonic filters planning problem. Expert Syst Appl 7:4157–4174

    Google Scholar 

  • Chiou J-P (2007) Variable scaling hybrid differential evolution for large-scale economic dispatch problems. Electr Power Syst Res 77:212–218

    Article  MathSciNet  Google Scholar 

  • Chiou JP, Wang FS (2001) Estimation of monod model parameters by hybrid differential evolution. Bioprocess Biosyst Eng 24:109–113

    Article  Google Scholar 

  • Das S, Abraham A, Chakraborty UK, Konar A (2009) Differential evolution using a neighborhood-based mutation operator. IEEE Trans Evolut Comput 13:526–553

    Article  Google Scholar 

  • Elbeltagi E, Hegazy T, Grierson D (2005) Comparison among five evolutionary-based algorithms. Adv Eng Inform 19:43–53

    Article  Google Scholar 

  • Eusuff MM, Lansey KE (2003) Optimization of water distribution network design using the shuffled frog leaping algorithm. J Water Res Plane Manage 129:210–225

    Article  Google Scholar 

  • Garcia S, Molina D, Lozano M, Herrera F (2009) A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real parameter optimization. J Heuristics 15:617–644

    Article  MATH  Google Scholar 

  • Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks, pp 1942–1948

  • Kwon Y-D, Kwon S-B, Jin S-B, Kim J-Y (2003) Convergence enhanced genetic algorithm with successive zooming method for solving continuous optimization problems. Comput Struct 81:1715–1725

    Article  MathSciNet  Google Scholar 

  • Lee MH, Ch Han, Chang KS (1999) Dynamic optimization of a continuous polymer reactor using a modified differential evolution algorithm. Ind Eng Chem Res 38:4825–4831

    Article  Google Scholar 

  • Liu B, Wang L, Jin Y-H, Huang D-X, Tang F (2007) Control and synchronization of chaotic systems by differential evolution algorithm. Chaos Soliton Fract 34:412–419

    Article  MATH  Google Scholar 

  • Lopez Cruz IL, van Willigenburg LG, van Straten G (2003) Optimal control of nitrate in lettuce by a hybrid approach: differential evolution and adjustable control weight gradient algorithms. Comput Electron Agr 40:179–197

    Article  Google Scholar 

  • Neri F, Tirronen V (2009) Scale factor local search in differential evolution. Memetic Comp 1:153–171

    Article  Google Scholar 

  • Neri F, Tirronen V (2010) Recent advances in differential evolution: a review and experimental analysis. Artif Intell Rev 33:61–106

    Article  Google Scholar 

  • Noman N, Iba H (2008) Accelerating differential evolution using an adaptive local search. IEEE Trans Evolut Comput 12:107–125

    Article  Google Scholar 

  • Perez-Bellido AM, Salcedo-Sanz S, Ortiz-Garcia EG, Portilla-Figueras JA, Lopez-Ferreras F (2008) A comparison of memetic algorithms for the spread spectrum radar polyphase codes design problem. Eng Appl Artif Intell 21:1233–1238

    Article  Google Scholar 

  • Plagianakos VP, Tasoulis DK, Vrahatis MN (2008) A review of major application areas of differential evolution. In: Chakraborty UK (ed) Advances in differential evolution, vol 143 of studies in computational intelligence. Springer, Berlin, pp 197–238

    Google Scholar 

  • Price K (1999) An introduction to differential evolution. In: Corne D, Dorigo M, Glover F (eds) New Ideas in Optimization. McGraw-Hill, New York

    Google Scholar 

  • Qin AK, Suganthan PN (2005) Self-adaptive differential evolution algorithm for numerical optimization. In: The 2005 IEEE congress on evolutionary computation CEC2005, vol 13, pp 1785–1791

  • Qin AK, Huang VL, Suganthan PN (2009) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evolut Comput 13:398–417

    Article  Google Scholar 

  • Rahnamayan S, Tizhoosh HR, Salama MM (2008) Opposition-based differential evolution. IEEE Trans Evolut Comput 12:64–79

    Article  Google Scholar 

  • Sorensena K, Sevauxb M (2006) MA|PM: memetic algorithms with population management. Comput Oper Res 33:1214–1225

    Article  Google Scholar 

  • Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359

    Article  MathSciNet  MATH  Google Scholar 

  • Strinivas M, Rangaiah GP (2007) A study of differential evolution and tabu search for benchmark, phase equilibrium and phase stability problems. Comput Chem Eng 31:760–772

    Article  Google Scholar 

  • Suganthan PN, Hansen N, Liang JJ, Deb K, Chen Y-P, Auger A, Tiwari S (2005) Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. Technical Report Report #2005005, Nanyang Technological University, Singapore and IIT Kanpur, India. http://www.ntu.edu.sg/home/EPNSugan/

  • Teng NS, Teo J, Hijazi MHA (2009) Self-adaptive population sizing for a tune-free differential evolution. Soft Comput 13:709–724

    Article  Google Scholar 

  • Wang Y-J, Zhang J-S (2007) Global optimization by an improved differential evolutionary algorithm. Appl Math Comput 188:669–680

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to the anonymous reviewers for their valuable suggestions and comments to improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Alinia Ahandani.

Appendix: the set of benchmark functions

Appendix: the set of benchmark functions

For all functions listed below, N is considered to be the function dimension.

1.1 High-dimensional benchmark functions

HF1: Griewangk’s function

$$ \begin{gathered} f(x) = 1 + \sum\limits_{i = 1}^{N} {{\frac{{x_{i}^{2} }}{4,000}}} - \prod\limits_{i = 1}^{N} {\cos (x_{i} } /\sqrt i ) \hfill \\ x_{i} \in [ - 512,511],\,i = 1, \ldots ,N \hfill \\ \end{gathered} $$

It has a unique global minima f = 0 located at point \( (0, \ldots ,0) \).

HF2: extended Schaffer 2 (EF10) function

$$ \begin{gathered} f(x) = \sum\limits_{i = 1}^{N - 1} {\left( {x_{i}^{2} + x_{i + 1}^{2} } \right)^{0.25} } \left[ {\sin^{2} \left( {50\left( {x_{i}^{2} + x_{i + 1}^{2} } \right)^{0.1} } \right) + 1} \right] \hfill \\ x_{i} \in [ - 100,100],i = 1, \ldots ,N \hfill \\ \end{gathered} $$

HF3: Ackley’s function:

$$ \begin{gathered} f(x) = - 20\exp \left( { - 0.2\sqrt {\frac{1}{N}} \sum\limits_{i = 1}^{N} {x_{i}^{2} } } \right) - \exp \left( {\frac{1}{N}\sum\limits_{i = 1}^{N} {\cos 2\pi x_{i} } } \right) \hfill \\ x_{i} \, \in \left[ { - 32,32} \right],\,i = 1, \ldots ,N \hfill \\ \end{gathered} $$

It has a global minima \( f = - 20 - \text{e} \) located at point \( (0, \ldots ,0) \).

HF4: generalized penalized 2 function

$$ \begin{gathered} f(x) = {\frac{\pi }{N}}\{ \sum\limits_{i = 1}^{N - 1} {[(x_{i} } - 1)^{2} [1 + 10\sin^{2} (3\pi x_{i + 1} ) + 10\sin^{2} (\pi x_{i} )] \hfill \\ + (x_{N} - 1)^{2} [1 + 10\sin^{2} (3\pi x_{N} )]\} + \sum\limits_{i = 1}^{N} {u(x_{i} } ,5,100,4) \hfill \\ u(x_{i} ,5,100,4) = \left\{ \begin{gathered} 100(x_{i} - 5)^{4} \quad x_{i} > 5 \hfill \\ 0\quad - 5 \le x_{i} \le \quad 5 \hfill \\ 100( - x_{i} - 5)^{4} \quad x_{i} < - 5 \hfill \\ \end{gathered} \right. \hfill \\ x_{i} \in [ - 50,50],i = 1, \ldots ,N \hfill \\ \end{gathered} $$

It has a unique global minima f = 0 located at point \( (1, \ldots ,1) \).

HF5: Zakharov’s function

$$ \begin{gathered} f(x) = \sum\limits_{i = 1}^{N} {x_{i}^{2} } + \left( {\sum\limits_{i = 1}^{N} {0.5ix_{i} } } \right)^{2} + \left( {\sum\limits_{i = 1}^{N} {0.5ix_{i} } } \right)^{4} \hfill \\ x_{i} \, \in \,[ - 5,10],i = 1, \ldots ,N \hfill \\ \end{gathered} $$

It has a unique global minima f = 0 located at point \( (0, \ldots ,0) \).

HF6: Rosenbrock’s function

$$ \begin{gathered} f(x) = \sum\limits_{i = 1}^{N - 1} {\left[ {100\left( {x_{i}^{2} - x_{i + 1} } \right)^{2} + \left( {x_{i} - 1} \right)^{2} } \right]}^{2} \hfill \\ x_{i} \in \left[ { - 100,100} \right],i = 1, \ldots ,N \hfill \\ \end{gathered} $$

It has a unique global minima f = 0 located at point \( (1, \ldots ,1) \).

1.2 The low-dimensional benchmark functions

LF1: modified Shubert function

$$ \begin{gathered} f(x) = \left\{ {\sum\limits_{j = 1}^{5} {j\cos [(j + 1)x_{1} } + j]} \right\}\left\{ {\sum\limits_{j = 1}^{5} {j\cos [(j + 1)x_{2} + j]} } \right\} \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x_{i} \in [ - 10,10],i = 1,2 \hfill \\ \end{gathered} $$

It has one global minima f = −186.73909 located at point (−1.42513,−0.80032).

LF2: modified Longerman function

$$ \begin{gathered} f(x) = - \sum\limits_{j = 1}^{5} {c_{j} } \cos (d_{j} /\pi )\exp ( - \pi d_{j} ) \hfill \\ d_{j} = \sum\limits_{i = 1}^{N} {(x_{i} } - a_{ij} )^{2} , \hfill \\ x_{i} \in [0,10],N = 5 \hfill \\ \end{gathered} $$
$$ A = \left( {\begin{array}{*{20}c} { 9. 6 8 1} & {0. 6 6 7} & { 4. 7 8 3} & { 9.0 9 5} & { 3. 5 1 7} \\ { 9. 400} & { 2.0 4 1} & { 3. 7 8 8} & { 7. 9 3 1} & { 2. 8 8 2} \\ { 8.0 2 5} & { 9. 1 5 2} & { 5. 1 1 4} & { 7. 6 2 1} & { 4. 5 6 4} \\ { 2. 1 9 6} & {0. 4 1 5} & { 5. 6 4 9} & { 6. 9 7 9} & { 9. 5 10} \\ { 8.0 7 4} & { 8. 7 7 7} & { 3. 4 6 7} & { 1. 8 6 7} & { 6. 70 8} \\ \end{array} } \right)\quad C = \left( {\begin{array}{*{20}c} {0. 80 6} & {0. 5 1 7} & {0. 1} & {0. 90 8} & {0. 9 6 5} \\ \end{array} } \right) $$

It has a unique minima f = −0.965000 located at point (8.074, 8.777, 3.467, 1.867, 6.708).

LF3: Easom function

$$ \begin{gathered} f(x) = - \cos x_{1} \cos x_{2} \exp ( - ((x_{1} - \pi )^{2} + (x_{2} - \pi )^{2} )) \hfill \\ \,\,x_{i} \in [ - 100,100],i = 1,2 \hfill \\ \end{gathered} $$

It has a unique global minima f = −1 located at the point \( (\pi ,\pi ) \).

LF4: Goldstein and Price function

$$ \begin{gathered} f(x) = [1 + (x_{1} + x_{2} + 1)^{2} \times (19 - 14x_{1} + 3x_{1}^{2} - 14x_{2} + 6x_{1} x_{2} + 3x_{2}^{2} )] \times \hfill \\ \,\,\,\,[30 + (2x_{1} - 3x_{2} )^{2} ) \times (18 - 32x_{1} - 12x_{1}^{2} + 48x_{2} - 36x_{1} x_{2} + 27x_{2}^{2} )] \hfill \\ x_{i} \in [ - 2,2],i = 1,2 \hfill \\ \end{gathered} $$

It has a unique global minima f = 3 located at the point (0,−1).

LF5: (Kwon et al. 2003)

$$ \begin{gathered} f(x) = \left[ {0.002 + \sum\limits_{j = 1}^{25} {\left( {j + \sum\limits_{i = 1}^{2} {(x_{i} - a_{ij} )^{6} } } \right)}^{ - 1} } \right]^{ - 1} \hfill \\ x_{i} \in [ - 65.536,65.536],\,i = 1,2 \hfill \\ \end{gathered} $$

Where A is given by

$$ A =\left( \begin{array}{lllllllllllllllllllllllll} { - 32} & { - 16} & 0 & {16} & {32} & { - 32} & { - 16} & 0 & {16} & {32} & { - 32} & { - 16} & 0 & {16} & {32} & { - 32} & { - 16} & 0 & {16} & {32} & { - 32} & { - 16} & 0 & {16} & {32} \\ { - 32} & { - 32} & { - 32} & { - 32} & { - 32} & { - 16} & { - 16} & { - 16} & { - 16} & { - 16} & 0 & 0 & 0 & 0 & 0 & {16} & {16} & {16} & {16} & {16} & {32} & {32} & {32} & {32} & {32} \\ \end{array}\right) $$

It has one global minima f = 0.9980 located at point (−31.9772,−31.9783).

LF6: Himmelblau function

$$ \begin{gathered} f(x) = (x_{1}^{2} + x_{2} - 11)^{2} + (x_{1} + x_{{_{2} }}^{2} - 7)^{2} + 0.1[(x_{1} - 3)^{2} + (x_{2} - 2)^{2} ] \hfill \\ \,x_{i} \in [ - 6,6],\,i = 1,2 \hfill \\ \end{gathered} $$

It has a unique global minima f = 0 located at the point (3,2).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahandani, M.A., Shirjoposh, N.P. & Banimahd, R. Three modified versions of differential evolution algorithm for continuous optimization. Soft Comput 15, 803–830 (2010). https://doi.org/10.1007/s00500-010-0636-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-010-0636-5

Keywords

Navigation