Skip to main content
Log in

Deriving weights from a pairwise comparison matrix over an alo-group

  • Original Paper
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In this paper, at first, we provide some results on the group of vectors with components in a divisible Abelian linearly ordered group, the related subgroup of \(\odot\)-normal vectors, the relation of \(\odot\)-proportionality and the corresponding quotient group. Then, we apply the achieved results to the groups of reciprocal and consistent matrices over divisible Abelian linearly ordered groups; this allows us to deal with the problem of deriving a weighting ranking for the alternatives from a pairwise comparison matrix. The proposed weighting vector has several advantages; it satisfies, for instance, the independence of scale-inversion condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barzilai J (1997) Deriving weights from pairwise comparison matrices. J Oper Res Soc 48:1226–1232

    MATH  Google Scholar 

  • Barzilai J (1998) Consistency measures for pairwise comparison matrices. J MultiCrit Decis Anal 7:123–132

    Article  MATH  Google Scholar 

  • Basile L, D’Apuzzo L (1997) Ranking and weak consistency in the a.h.p. context. Rivista di matematica per le scienze economiche e sociali 20(1):99–110

    MATH  Google Scholar 

  • Basile L, D’Apuzzo L (2002) Weak consistency and quasi-linear means imply the actual ranking. Int J Uncertain Fuzziness Knowl Based Syst 10(3):227–239

    Article  MATH  MathSciNet  Google Scholar 

  • Basile L, D’Apuzzo L (2006a) Transitive matrices, strict preference and intensity operators. Math Methods Econ Finance 1:21–36

    MathSciNet  Google Scholar 

  • Basile L, D’Apuzzo L (2006b) Transitive matrices, strict preference and ordinal evaluation operators. Soft Comput 10(10):933–940

    Article  MATH  Google Scholar 

  • Birkhoff G (1984) Lattice theory, vol 25. American Mathematical Society, RI

  • Cavallo B, D’Apuzzo L (2009a) A general unified framework for pairwise comparison matrices in multicriterial methods. Int J Intell Syst 24(4):377–398

    Article  MATH  Google Scholar 

  • Cavallo B, D’Apuzzo L (2009b) Recent advances in applied mathematics, chapter Transitive pairwise comparison matrices over abelian linearly ordered groups, pp 207–212. WSEAS

  • Cavallo B, D’Apuzzo L (2010) Characterizations of consistent pairwise comparison matrices over abelian linearly ordered groups. Int J Intell Syst 25(10):1035–1059

    Article  MATH  Google Scholar 

  • Cavallo B, D’Apuzzo L, Squillante M (2009) Building consistent pairwise comparison matrices over abelian linearly ordered groups. In: Algorithmic decision theory, Lecture notes in artificial intelligence, vol 5783, Springer, Berlin, pp 237–248

  • Cavallo B, D’Apuzzo L, Squillante M (2011) About a consistency index for pairwise comparison matrices over a divisible alo-group. Int J Intell Syst (Submitted)

  • D’Apuzzo L, Marcarelli G, Squillante M (2007) Generalized consistency and intensity vectors for comparison matrices. Int J Intell Syst 22(12):1287–1300

    Article  MATH  Google Scholar 

  • Fucks L (1960) Abelian groups. Pergman Press, New York

  • Herrera-Viedma E, Herrera F, Chiclana F, Luque M (2004) Some issue on consistency of fuzzy preferences relations. Eur J Oper Res Soc 154:98–109

    Article  MATH  MathSciNet  Google Scholar 

  • Saaty TL (1977) A scaling method for priorities in hierarchical structures. J Math Psychol 15:234–281

    Article  MATH  MathSciNet  Google Scholar 

  • Saaty TL (1980) The analytic hierarchy process. McGraw-Hill, New York

    MATH  Google Scholar 

  • Saaty TL (1986) Axiomatic foundation of the analytic hierarchy process. Manag Sci 32(7):841–855

    Article  MATH  MathSciNet  Google Scholar 

  • Saaty TL (1990) Eigenvector and logarithmic least squares. Eur J Oper Res Soc 48(1):156–160

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bice Cavallo.

Appendix

Appendix

In this section, we provide examples for deriving a weighting vector from a PCM (Examples 1, 2, 3) and for showing how our approach is able to deal with the independence of the scale-inversion condition (Example 4).

Example 1

Let \(\{x_{1},x_{2},x_{3},x_{4}\}\) be a set of alternatives and

$$ A =\left(\begin{array}{llllllll} 1 & & 2 & & 4 & & 5 & \\ \frac{1}{2} & & 1 & & 2 & & \frac{5}{2} & \\ \frac{1}{4} & & \frac{1}{2} & & 1 & & \frac{5}{4} & \\ \frac{1}{5} & & \frac{2}{5} & & \frac{4}{5} & & 1 & \end{array}\right) $$

a multiplicative PCM encoding the preference intensities of the alternatives. \(A\) is a consistent PCM because the columns are proportional with respect to the multiplication \(\cdot\) (see Proposition 30): \(\underline {a}^{k}=a_{1k}\cdot\underline {a}^{1},\) for \(k = 2,3, 4.\) By Proposition 36, each column is an ordinal evaluation vector; thus the actual ranking is \(x_{1} \succ x_{2} \succ x_{3} \succ x_{4}.\) The vector

$$ \begin{aligned} \underline {w}_{m_{\cdot}}(A)&=(m_{\cdot}( \underline {a}_{1}),m_{\cdot}( \underline {a}_{2}), m_{\cdot}( \underline {a}_{3}), m_{\cdot}( \underline {a}_{4}))\\ &=\left(\root{4}\of{40}, \root{4}\of{\frac{5}{2}}, \root{4}\of{\frac{5}{32}},\root{4}\of{\frac{8}{125}}\right) \end{aligned} $$

is the weighting vector; it is a \(\odot\)-normal vector, in fact \(\prod_{i=1}^{4}m_{\cdot}( \underline {a}_{i})=1.\)

We stress that \(\underline {w}_{m_{\cdot}}(A)\) can be obtained by applying the \(\odot\)-normalization function \(N\) to an arbitrary column, for instance by choosing \(\underline {a}^{1}, \) we have:

$$ \begin{aligned} N(\underline {a}^{1})&= \frac{\underline {a}^{1}}{m_{\cdot}( \underline {a}^{1})}\\ &=\underline {a}^{1} \cdot \root{4}\of{40}=(\root{4}\of{40}, \frac{1}{2}\root{4}\of{40},\frac{1}{4}\root{4}\of{40},\frac{1}{5}\root{4}\of{40})\\ &= \underline {w}_{m_{\cdot}}(A). \end{aligned} $$

Example 2

Let \(\{x_{1},x_{2},x_{3},x_{4}\}\) be a set of alternatives and

$$ B= \left( \begin{array}{llll} 0 & -3 & -4 & -4 \\ 3 & 0 & -1 & -1 \\ 4 & 1 & 0 & 0 \\ 4 & 1 & 0 & 0 \\ \end{array} \right). $$

an additive PCM encoding the preference intensities of the alternatives. \(B\) is a consistent PCM because the columns are proportional with respect to the addition \(+\) (see Proposition 30): \(\underline {b}^{k}=b_{1k}+\underline {b}^{1},\) for \(k = 2,3, 4.\) By Proposition 36, each column is an ordinal evaluation vector; thus the actual ranking is \(x_{3} \sim x_{4} \succ x_{2} \succ x_{1}.\) The vector

$$ \begin{aligned} \underline {w}_{m_{+}}(B)&=(m_{+}( \underline {b}_{1}),m_{+}( \underline {b}_{2}), m_{+}( \underline {b}_{3}), m_{+}( \underline {b}_{4}))\\ =&\left(-\frac{11}{4}, \frac{1}{4}, \frac{5}{4}, \frac{5}{4} \right) \end{aligned} $$

is the weighting vector; it is a \(\odot\)-normal vector, in fact \(\sum_{i=1}^{4}m_{+}( \underline {b}_{i})=0.\)

We stress that \(\underline {w}_{m_{+}}(B)\) can be obtained by applying the \(\odot\)-normalization function \(N\) to an arbitrary column, for instance by choosing \(\underline {b}^{1},\) we have:

$$ \begin{aligned} N(\underline {b}^{1})&= \underline {b}^{1}- m_{+}(\underline {b}^{1})\\ &=\underline {b}^{1} - \frac{11}{4}=\left(-\frac{11}{4}, 3-\frac{11}{4},4-\frac{11}{4},4-\frac{11}{4}\right)\\ &=\underline {w}_{m_{+}}(B). \end{aligned} $$

Example 3

Let \(\{x_{1},x_{2},x_{3},x_{4}\}\) be a set of alternatives and

$$ C =\left( \begin{array}{llllllll} 0.5 & 0.6 & 0.7 & 0.8 \\ 0.4 & 0.5 & 0.609 & 0.727 \\ 0.3 & 0.391 & 0.5 & 0.632 \\ 0.2 & 0.273 & 0.368 & 0.5 \end{array} \right) $$

a fuzzy PCM encoding the preference intensities of the alternatives. \(C\) is a consistent PCM because the columns are \(\otimes\)-proportional (see Proposition 30): \(\underline {c}^{k}=c_{1k}\otimes \underline {c}^{1},\) for \(k = 2,3, 4.\) By Proposition 36, each column is an ordinal evaluation vector; thus the actual ranking is \(x_{1} \succ x_{2} \succ x_{3} \succ x_{4}.\) Moreover, by applying (8), we obtain the weighting vector:

$$ \begin{aligned} \underline {w}_{m_{\otimes}}(C)&=(m_{\otimes}( \underline {c}_{1}),m_{\otimes}( \underline {c}_{2}), m_{\otimes}( \underline {c}_{3}), m_{\otimes}( \underline {c}_{4}))\\ =&\left(0.65921, 0.56323, 0.45329, 0.32593 \right); \end{aligned} $$

\(\underline {w}_{m_{\otimes}}(C)\) is a \(\otimes\)-normal vector, in fact, by applying (7), \(\bigotimes_{i=1}^{4}m_{\otimes}( \underline {c}_{i})=0.5.\)

We stress that \(\underline {w}_{m_{\otimes}}(C)\) can be obtained by applying the \(\odot\)-normalization function \(N\) to an arbitrary column, for instance by choosing \(\underline {c}^{1}, \) we have:

$$ \begin{aligned} N(\underline {c}^{1})&= \underline {c}^{1}\otimes (1-m_{\otimes}(\underline {c}^{1}))=\underline {c}^{1} \otimes 0.65921 \\ &=(0.5 \otimes0.65921, \;0.4 \otimes 0.65921,\\ & \quad\; 0.3 \otimes 0.65921,\; 0.2 \otimes 0.65921)\\ &=\underline {w}_{m_{\otimes}}(C). \end{aligned} $$

Example 4

Let \(\{x_{1},x_{2},x_{3},x_{4}\}\) be a set of alternatives and

$$ D =\left(\begin{array}{llllllll} 1 & \frac{1}{4} & \frac{1}{2} & \frac{1}{2} \\ 4 & 1 & 2 & 1 \\ 2 & \frac{1}{2} & 1 & \frac{1}{4} \\ 2 & 1 & 4 & 1 \end{array}\right) $$

a multiplicative PCM encoding the preference intensities of the alternatives. As \(d_{14}\neq d_{13}d_{34}, D\) is an inconsistent PCM and, by \(\odot\)-reciprocity, \(D^{(-1)}=\frac{1}{D}\) is inconsistent too. The principal eigenvalue of \(D\) and \(\frac{1}{D}=D^{T}\) is \(\lambda_{\rm max}=4.18552\) and the corresponding eigenvectors are

$$ \underline {w}_{\lambda_{\rm max}}(D)=(0.20177, 0.64411, 0.28131, 0.68211), $$
$$ \underline {w}_{\lambda_{\rm max}}\left(\frac{1}{D}\right)= (0.76963, 0.22028, 0.55202, 0.23327). $$

The eigenvectors \(\underline {w}_{\lambda_{\rm max}}(D)\) and \(\underline {w}_{\lambda_{\rm max}}(\frac{1}{D})\) provide different rankings, that are:

$$ x_{4}\succ x_{2}\succ x_{3} \succ x_{1}, $$
$$ x_{2}\succ x_{4}\succ x_{3} \succ x_{1}, $$

respectively. Differently, the geometric mean vectors associated to \(D\) and \(\frac{1}{D},\)

$$ \underline {w}_{m_{.}} (D)=\left(\frac{1}{16}, 8, \frac{1}{4},8\right), \quad \underline {w}_{m_{.}} \left(\frac{1}{D}\right)=\left(16, \frac{1}{8}, 4,\frac{1}{8}\right) $$

provide the same ranking:

$$ x_{4}\sim x_{2}\succ x_{3} \succ x_{1}. $$
(43)

We stress that, the preference ratios, expressed by means of \(D\) (or equivalently \(\frac{1}{D}\)), agree with ranking (43); indeed, \(x_{4}\sim x_{2}\) according to \(d_{24}=d_{42}=1, x_{2} \succ x_{3}\) according to \(d_{23}>1, x_{3} \succ x_{1}\) according to \(d_{31}>1\) and \(x_{4} \succ x_{1}\) according to \(d_{41}>1.\)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavallo, B., D’Apuzzo, L. Deriving weights from a pairwise comparison matrix over an alo-group. Soft Comput 16, 353–366 (2012). https://doi.org/10.1007/s00500-011-0746-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-011-0746-8

Keywords

Navigation