Skip to main content
Log in

Robust H output feedback control with pole placement constraints for uncertain discrete-time fuzzy systems

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

This paper investigates the problem of multi-objective control for a class of uncertain discrete-time fuzzy systems. The state-space Takagi–Sugeno T–S fuzzy model with linear fractional parameter uncertainties is adopted. Based on a linear matrix inequality approach and via so-called dynamic parallel distributed compensation, a fuzzy full-order dynamic output feedback controller is developed such that the L 2 gain performance from the exogenous input signals to the controlled output is less than or equal to some prescribed value and, for all admissible uncertainties, the closed-loop poles of each local system are within a pre-specified sub-region of complex plane. Two numerical examples are provided to illustrate the effectiveness of the proposed design method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Assawinchaichote W, Nguang S (2006) Fuzzy H output feedback control design for singularly perturbed systems with pole placement constraints: An LMI approach. IEEE Trans Fuzzy Syst 14(3):361–371

    Article  Google Scholar 

  • Assawinchaichote W, Nguang SK, Shi P, Boukas E (2008) H state-feedback control design for nonlinear systems with D-stability constraints: LMI approach. Math Comput Simul 78:514–531

    Article  MathSciNet  MATH  Google Scholar 

  • Cao Y, Frank PR (2000) H disturbance attenuation for a class of uncertain discrete-time fuzzy systems. IEEE Trans Fuzzy Syst 8(4):406–415

    Article  Google Scholar 

  • Chang L, Min-Long L Observer-based robust (2004) H control for fuzzy systems using two-step procedure. IEEE Trans Fuzzy Syst 12(3):350–359

    Article  Google Scholar 

  • Chen B, Tseng C, Uang H (2000) Mixed H 2/H fuzzy output feedback control for nonlinear dynamic systems. IEEE Trans Fuzzy Syst 8(3):249–265

    Article  Google Scholar 

  • Chen S, Chang Y, Su S, Chung S, Lee T (2005) Robust static output-feedback stabilization for nonlinear discrete-time systems with time delay via fuzzy control approach. IEEE Trans Fuzzy Syst 13(2):263–272

    Article  Google Scholar 

  • Din B, Sun H, Yang P (2006) Further studies on LMI-based relaxed stabilization conditions for nonlinear systems in Takagi–Sugeno’s form. Automatica 42:503–508

    Article  Google Scholar 

  • Gahinet P, Nemirovski A, Laub AJ, Chilali M (1995) LMI control toolbox user guide. The MathWorks Inc, Natick

  • Gao H, Wang Z, Wang C (2005) Improved H control for discrete-time fuzzy dynamic systems: a cone complementarity linearization approach. Inf Sci 175:57–77

    Article  MATH  Google Scholar 

  • Guerra T, Vermeiren L (2004) LMI-based relaxed non quadratic stabilization conditions for nonlinear systems in the Takagi Sugeno’s form. Automatica 40:823–829

    Article  MathSciNet  MATH  Google Scholar 

  • Han Z, Feng G, Walcott B, Zhang Y (2000) H controller design of fuzzy dynamic systems with pole placement constraints. In: Proceedings of the american control conference, Chicago, Illinois

  • Kau S, Lee H, Yang C, Lee C Robust (2007) H fuzzy static output feedback control of TS fuzzy systems with parametric uncerainties. Fuzzy Sets Syst 158:135–146

    Article  MathSciNet  MATH  Google Scholar 

  • Kim E, Lee H (2000) New approaches to relaxed quadratic stability condition of fuzy control systems. IEEE Trans Fuzzy Syst 8(5):523–534

    Article  Google Scholar 

  • Lee H, Park J, Chen G (2001) Robust fuzzy control of nonlinear systems with parametric uncertainties. IEEE Trans Fuzzy Syst 9(3):369–379

    Google Scholar 

  • Li J, Wang H, Niemann D, Tanaka K (2000) Dynamic parallel distributed compensation for Takagi-Sugeno fuzzy systems: an LMI approach. Inf Sci 123:201–221

    Article  MathSciNet  MATH  Google Scholar 

  • Lin C, Wang G, Lee T (2005) Improvement observer-based H control for T–S fuzzy systems. Automatica 41:1651–1656

    Article  MathSciNet  MATH  Google Scholar 

  • Loo J, Lin M Robust (2004) H nonlinear modelling and control via uncertain fuzzy systems. Fuzzy Sets Syst 143:189–209

    Article  Google Scholar 

  • Nguang SK, Shi P Robust (2006) H output feedback control design for fuzzy dynamic systems with quadratic D-stability constraints: an LMI approach. Inf Sci 176:2161–2191

    Article  MathSciNet  MATH  Google Scholar 

  • Paucelle D, Arzelier D, Bachelier O, Bernussou J (2002) A new robust D-stability condition for real convex polytopic uncertainty. Syst Control Lett 40:21–30

    Article  Google Scholar 

  • Razavi-Pannah J, Majd V (2008) A robust multiobjective DPDC for uncertain TS fuzzy systems. Fuzzy Sets Syst 159(20):2749–2762

    Article  Google Scholar 

  • Takagi T, Sugeno M (1985) Fuzzy identification of systems an its application to modelling and control. Trans Syst Man Cybern 15:116–132

    Article  MATH  Google Scholar 

  • Tanaka K, Ikeda T, Wang H (1996) Robsut stabilization of a class of uncertain nonlinear systems via fuzzy control: Quadratic stabilizability , H control theory, and linear matrix inequalities. IEEE Trans Fuzzy Syst 4(1):1–13

    Article  Google Scholar 

  • Tanaka K, Ikeda T, Wang H (1998) Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs. IEEE Trans Fuzzy Syst 6(2):250–265

    Article  Google Scholar 

  • Tanaka K., Nishimura M., Wang H. (1998) Multi-objective fuzzy control of high rise/high speed elevators using LMIs. In: Proceedings of the American Control Conference, vol 6, Philadelphia, PA, pp 3450–3454

  • Tuan H, Apkarian P, Narikiyo T, Yamamoto Y (2001) Parametrized linear matrix inequality techiques in fuzzy control system design. IEEE Trans Fuzzy Syst 9(2):324–332

    Article  Google Scholar 

  • Wang H, Tanaka K, Griffin M (1996) An approach to fuzzy control of nonlinear systems: stability and design issues. IEEE Trans Fuzzy Syst 4(1):14–23

    Article  Google Scholar 

  • Wang L, Feng G (2004) Piecewise H controller design of discrete-time fuzzy systems. IEEE Trans Fuzzy Syst 34(1):682–686

    Google Scholar 

  • Wu H, Zhang H (2005) Reliable mixed H 2 / H fuzzy static output feedback control for nonlinear systems with sensor faults. Automatica 41:1925–1932

    Article  MATH  Google Scholar 

  • Xiaodong L, Qingling Z (2003) New approaches to H controller designs based on observers for T–S fuzzy systems via LMI. Automatica 39:1571–1582

    Article  MATH  Google Scholar 

  • Xie L (1996) Output feedback H control of systems with parameters uncertainties. Int J Control 63(4):741–750

    Article  MATH  Google Scholar 

  • Xu S, Lam J (2005) Robust H control for uncertain discrete-time-delay fuzzy systems via output feedack controllers. IEEE Trans Fuzzy Syst 13(1):82–93

    Article  Google Scholar 

  • Zhang H, Dang C (2008) Piecewise H controller design of uncertain discrete-time fuzzy systems with time delays. IEEE Trans Fuzzy Syst 16(6):1649–1655

    Article  Google Scholar 

  • Zhou S, Feng G (2006) Generalised H 2 controller synthesis for uncertain discrete-time fuzzy systems via basis-dependent L yapunov functions. IEE Proc Control Theory Appl 153(1):74–80

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mourad Kchaou.

Additional information

Communicated by Y. Jin

Appendices

Appendix 1: Proof of Theorem 3.1

Considering (19) for the closed-loop system (15), the following inequality holds

$$ \left[ \begin{array}{llll} -P & * &*&*\\ 0&-\gamma I&*&*\\ \tilde{A}_{zz}(k) & \tilde{B}_z(k)&-P^{-1} &*\\ \tilde{C}_z & \tilde{D}_{z}&0&-\gamma I\\ \end{array} \right]<0 $$
(48)

and it could be be written as

$$ \left[\begin{array}{llll} -P & * &*&*\\ 0&-\gamma I&*&*\\ \tilde{A}_{zz} & \tilde{B}_z&-P^{-1} &*\\ \tilde{C}_z & \tilde{D}_{z}&0&-\gamma I\\ \end{array} \right] +\hbox{sym} \left\{ \left[\begin{array}{l} 0\\ 0\\ \tilde H^{T}\\ 0 \end{array} \right] \Updelta (k) \left[\begin{array}{llll} \tilde{E}_{z}&\tilde{E}_{1z}&0&0 \end{array}\right] \right\} <0 $$
(49)

Then, from Lemma 2.3, one has

$$ \left[\begin{array}{llllll} -P & * &*&*&*&*\\ 0&-\gamma I&*&*&*&*\\ \tilde{A}_{zz} & \tilde{B}_{z}&-P^{-1}&*&*&*\\ \tilde{C}_{z} & \tilde{D}_{z}&0&-\gamma I&*&*\\ \tilde{E}_{z}&\tilde{E}_{1z}&0&0&-\varepsilon I&*\\ 0&0&\varepsilon \tilde{H}^{T}&0&\varepsilon J&-\varepsilon I \end{array} \right] <0 $$
(50)

Let G a nonsingular matrix of appropriate dimension. Checking a congruence transformation by diag{IIGIII} to (50), and taking into account the fact P − G − G T ≤  − G T P −1 G, which is derived from (P − G)T P −1(G − P) ≥ 0, yields

$$ \left[\begin{array}{llllll} -P & * &*&*&*&*\\ 0&-\gamma I&*&*&*&*\\ G^{T}\tilde{A}_{zz} & G^{T}\tilde{B}_{z}&P-G-G^{T}&*&*&*\\ \tilde{C}_{z} & \tilde{D}_{z}&0&-\gamma I&*&*\\ \tilde{E}_{z}&\tilde{E}_{1z}&0&0&-\varepsilon I&*\\ 0&0&\varepsilon \tilde{H}^{T}G &0&\varepsilon J&-\varepsilon I \end{array} \right] <0 $$
(51)

Under the conditions of Theorem 3.1, a feasible solution of the inequalities (31) satisfies the condition \(Q-\Upsigma-\Upsigma^T<0, \) then we have

$$ \Upsigma+\Upsigma^T= \left[\begin{array}{ll} Y+Y^T&Z+I\\ Z^T+I&X+X^T \end{array} \right] >Q>0 $$
(52)

It follows that X + X T > 0 and Y + Y T > 0. So, X and Y are nonsingular. Checking a congruence transformation to the previous inequality by [Y T, −I]T, we get easily

$$ (X-Y^{-T}Z) + (X-Y^{-T}Z)^T>0 $$
(53)

which implies that Z − Y T X is also nonsingular. Hence, there exist nonsingular matrices M 1 and N 1 such that (35) holds.

Let

$$ G=\left[\begin{array}{ll} X& (I-XY)N_{1}^{-1}\\ M_{1}&- M_{1}Y N_{1}^{-1} \end{array}\right],\quad \Uppi_{2}= \left[\begin{array}{ll} Y&I\\ N_{1}&0 \end{array}\right],\quad \Uppi=\hbox{diag}\{\Uppi_{2},I,\Uppi_{2},I,I,I\}. $$
(54)

Clearly, G is nonsingular. Pre- and post-multiplying (51) by \(\Uppi^{T}\) and \(\Uppi, \) respectively, and letting \(Q=\Uppi_{2}^{\rm T}P\Uppi_{2}\) and \(\Upsigma=\Uppi_{2}^{\rm T}G \Uppi_{2},\) yields

$$ \Upupsilon_{zz}= \left[\begin{array}{llllll} -Q&*&*&*&*&*\\ 0&-\gamma I&*&*&*&*\\ \Upphi_{Azz}&\Upphi_{Bz}&Q-\Upsigma-\Upsigma^T&*&*&*\\ \Upphi_{Cz}&\Upphi_{Dz}&0&-\gamma I&*&*\\ \Upphi_{Ez}& \Upphi_{E1z}&0&0&-\varepsilon I&*\\ 0&0&\varepsilon \Upphi_{H}^T&0&\varepsilon J&-\varepsilon I \end{array} \right]<0 $$
(55)

where

$$ \begin{aligned} \Upphi_{Azz}&= \left[\begin{array}{ll} AzY+ B_{2z}{\mathcal{C}}_{z}& A_{z}+ B_{2z}{\mathcal{D}} C_{2z}\\ {\mathcal{A}}_{zz}&X^{T} A_{z}+{\mathcal{B}}_{z} C_{2z} \end{array}\right] \quad \Upphi_{Bz}= \left[\begin{array}{ll} B_{1z}+B_{2z}{\mathcal{D}} D_{21z}\\ X^{T} B_{1z}+{\mathcal{B}}_{z} D_{21z} \end{array}\right]\\ \Upphi_{Cz}&= \left[\begin{array}{ll} C_{1z}Y+D_{12z}{\mathcal{C}}_{z}& C_{1z}+ D_{12z}{\mathcal{D}} C_{2z} \end{array}\right]\quad \Upphi_{Dz}= D_{12z}{\mathcal{D}} D_{21z}\\ \Upphi_{Ez}&= \left[\begin{array}{ll} E_{z}Y+E_{2z}{\mathcal{C}}z& E_{z}+ E_{2z}{\mathcal{D}} C_{2z} \end{array}\right]\quad \Upphi_{E1z}= E_{1z}+ E_{2z}{\mathcal{D}} D_{21z}\\ \Upphi_{H}^{T}&= \left[\begin{array}{ll} H^{T}&H^{T}X \end{array}\right] \end{aligned} $$
(56)

with

$$ \begin{aligned} A_{zz}&=X^{T} A_{z}Y+X^{T}\left(B_{2z}\hat{{\mathbf{D}}} C_{2z}Y+ B_{2z}\hat{{\mathbf{C}}}_{z} N_{1}\right) + M_{1}^T \hat{{\mathbf{B}}}_{z} C_{2z}Y+ M_{1}^{T} \hat{{\mathbf{A}}}_{zz} N_{1}\\ {\mathcal{B}}_{z}&=X^{T} B_{2z}\hat{{\mathbf{D}}}+ M_{1}^{T}\hat{{\mathbf{B}}}_{z}\\ {\mathcal{C}}_{z}&=\hat{{\mathbf{D}}} C_{2z}Y+\hat{{\mathbf{C}}}_{z} N_{1}\\ {\mathcal{D}}&=\hat{{\mathbf{D}}} \end{aligned} $$
(57)

Now, using the properties (9) and expanding (55), we have

$$ {\sum_{i=1}^{r}\sum_{j=1}^{r}h_ih_j} \Upupsilon {ij}<0 $$
(58)

Based on the parameterized linear matrix inequality (PLMI) (Tuan et al. 2001), (58) yields feasible conditions that are less conservative and computationally efficient. The relaxation result is written as (31).□

Appendix 2: Proof of Theorem 3.2

Using Lemma 2.2, we learn that the closed-loop poles of each sub-system are all within the given D R region \({\mathfrak{D}, }\) if there exist matrices P > 0 and G such that

$$ \left[\begin{array}{ll} R_{11} \otimes P&*\\ R_{12}^{\rm T}\otimes P+R_{22} \otimes {G^{\rm T}\tilde{A}_{zz}(k)}& R_{22} \otimes (P-G-G^{\rm T})\\ \end{array}\right] <0 $$
(59)

Since \(\left[\begin{array}{ll} I&I \otimes \tilde{A}_{zz}^{T}(k) \end{array}\right]\) has full rank, (59) implies that

$$ \left[\begin{array}{ll} I \\ {I}\otimes{\tilde{A}_{zz}(k)} \end{array}\right]^{\rm T} \left[\begin{array}{ll} R_{11} \otimes P&*\\ R_{12}^{\rm T} \otimes P+R_{22} \otimes {G^{\rm T}\tilde{A}_{zz}(k)}&R_{22} \otimes {(P-G-G^{\rm T})}\\ \end{array}\right] \left[\begin{array}{l} I \\ {I}\otimes{\tilde{A}_{zz}(k)} \end{array}\right] <0 $$
(60)

which is

$$ R_{11} \otimes P+ R_{22} \otimes \left(\tilde{A}_{zz}^{T}(k)P\tilde{A}_{zz}(k)\right) +Sym\left(R_{12} \otimes \left(P\tilde{A}_{zz}(k)\right)\right)<0 $$
(61)

Inequality (59) can be written also as

$$ \left[\begin{array}{ll} R_{11} \otimes P&*\\ R_{12}^{\rm T} \otimes P+ R_{22} \otimes G^{\rm T}\tilde A_{zz}&R_{22} \otimes (P-G-G^{\rm T})\\ \end{array}\right]+ sym\left\{ \left[\begin{array}{l} 0 \\ R_{22} \otimes \tilde H^T G \end{array}\right] \tilde{\Updelta} (k) [I \otimes \tilde{E}_{z}\, 0] \right\}<0 $$
(62)

where

$$ \begin{aligned} \tilde{\Updelta}(k)&={I\otimes{\Updelta(k)}}=\tilde{F}(k)\big(I-\tilde {J} \tilde {F}(k)\big)^{-1},\qquad \tilde {J}&=\big ({I\otimes{J}}\big)=\hbox{diag}(J,\ldots,J),\\ \tilde{F}k&=\big ({I\otimes{F(k)}}\big)=\hbox{diag}(F(k),\ldots,F(k)) \end{aligned} $$
(63)

From (5) and (6), it is easy to verify that \(\tilde{J}^{\rm T}\tilde{J}- I<0\) and \(\tilde{F}(k)^{\rm T}\tilde{F}(k)\leq I.\)

According to Lemma 2.3, it holds that

$$ \left[\begin{array}{lllll} R{11}\otimes P&*&*&*\\ R_{12}^{\rm T}\otimes P+R_{22}G^{\rm T} \tilde A_{zz} & R_{22}{(P-G-G^{\rm T})}&*&*\\ I \otimes \Phi_{Ez}&{0}&-\varepsilon_{0}I&*\\ {0}&\varepsilon_{0} R_{22}\otimes \Upphi_{H}^{T}&\varepsilon_{0} I \otimes J-\varepsilon_{0}I \end{array} \right]<0 $$
(64)

Let \(\Upxi=\hbox{diag}(I\otimes {\Pi_2},I\otimes{\Pi_2},I,I).\) Pre- and post-multiplying (64) by \(\Upxi^{T}\) and \(\Upxi\) respectively, yields

$$ \Upgamma_{zz}=\left[ \begin{array}{llll} R_{11}\otimes Q&*&*&*\\ R_{12}^T Q+R_{22}\otimes \Phi_{Azz} & R_{22}{(Q-\Upsigma-\Upsigma^T)}&*&*\\ {I \otimes \Phi_{Ez}}&{0}&-\varepsilon_{0}I&*\\ {0}&\varepsilon_{0} R_{22}\otimes \Upphi_{H}^{\rm T}&\varepsilon_{0}{I}\otimes J-\varepsilon_{0}I \end{array} \right]<0 $$
(65)

Based on PLMI (Tuan et al. 2001), the relaxation result is written as (36).□

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kchaou, M., Souissi, M. & Toumi, A. Robust H output feedback control with pole placement constraints for uncertain discrete-time fuzzy systems. Soft Comput 17, 769–781 (2013). https://doi.org/10.1007/s00500-012-0958-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-012-0958-6

Keywords

Navigation