Skip to main content
Log in

Limit-cycle analysis of dynamic fuzzy control systems

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

The main purpose of this study is to predict limit cycles of a dynamic fuzzy control system by combining a stability equation, describing function and parameter plane. The stability of a linearized dynamic fuzzy control system is then analyzed using stability equations and the parameter plane method, with the assistance of a describing function method. This procedure identifies the amplitude and frequency of limit cycles that are clearly formed by the dynamic fuzzy controller in the parameter plane. Moreover, the suppression of the limit cycle by adjusting control parameters is proposed. Continuous and sampled-data systems are addressed, and the proposed approach can easily be extended to a fuzzy control system with multiple nonlinearities. Simulations are performed to demonstrate the effectiveness of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abdelnour G, Cheung TY, Chang CH, Tinetti G (1993) Steady-state analysis of a three-term fuzzy controller. IEEE Trans Syst Man Cybern 23:607–610

    Article  MATH  Google Scholar 

  • Ackermann J, Bunte T (1997) Actuator rate limits in robust car steering control. In: Proceedings of the IEEE conference on decision and control, pp 4726–4731

  • Chang CH, Chang MK (1994) Analysis of gain margins and phase margins of a nonlinear reactor control system. IEEE Trans Nucl Sci 41:1686–1691

    Article  Google Scholar 

  • Chang W, Park JB, Joo YH, Chen G (2003) Static output-feedback fuzzy controller for Chen’s chaotic system with uncertainties. Inf Sci 151:227–244

    Article  MathSciNet  MATH  Google Scholar 

  • Chen YL, Han KW (1970) Stability analysis of a nonlinear reactor control system. IEEE Trans Nucl Sci NS-17:18–25

    Article  Google Scholar 

  • Cheng CC, Huang CH (1998) On the limit cycle of the underwater vehicle control system. In: Proceedings of the international symposium on underwater technology, pp 461–465

  • Chu YC, Dowling AP, Glover K (1998) Robust control of combustion oscillations. In: Proceedings of IEEE international conference on control applications, pp 1165–1169

  • Cox CS, French IG (1986) Limit cycle prediction conditions for hydraulic control system. ASME J Dyn Syst Meas Control 108:17–23

    Article  MATH  Google Scholar 

  • D’Amico MB, Moiola JL, Paolini EE (2002) Hopf bifurcation for maps: a frequency-domain approach. IEEE Trans Circuits Syst I 49:281–288

    Article  MathSciNet  Google Scholar 

  • Genesio R, Tesi A (1988) On limit cycles in feedback polynomial systems. IEEE Trans Circuits Syst 35:1523–1528

    Article  MathSciNet  MATH  Google Scholar 

  • Genesio R, Tesi A, Villoresi F (1993) A frequency approach for analyzing and controlling chaos in nonlinear circuits. IEEE Trans Circuits Syst II 40:819–828

    Article  MATH  Google Scholar 

  • Gordillo F, Aracil J, Alamo T (1993) Determining limit cycles in fuzzy control systems. In: Proceedings of IEEE international conference on fuzzy systems, pp 193–198

  • Han KW (1977) Nonlinear control systems—some practical methods. Academic Cultural Company, California

    MATH  Google Scholar 

  • Han KW (1979) Digital and sampled-data control systems. Kuang-Mei Publishing Co., Lungtan

    Google Scholar 

  • Han KW, Thaler GJ (1966) Control system analysis and design using a parameter space method. IEEE Trans Autom Control 11:560–563

    Article  Google Scholar 

  • Hauksdottir AS, Sigurdaraottir G (1993) On the use of robust design methods in vehicle longitudinal controller design. ASME J Dyn Syst Meas Control 115:166–172

    Article  Google Scholar 

  • Itovich GR, Moiola JL (2006) On period doubling bifurcations of cycles and the harmonic balance method. Chaos Solitons Fractals 27:647–665

    Article  MathSciNet  MATH  Google Scholar 

  • Kim E, Lee H, Park M (2000) Limit-cycle prediction of a fuzzy control system based on describing function method. IEEE Trans Fuzzy Syst 8:11–21

    Article  Google Scholar 

  • Li J, Wang HO, Niemann D, Tanaka K (2000) Dynamic parallel distributed compensation for Takagi–Sugeno fuzzy systems: an LMI approach. Inf Sci 123:201–221

    Article  MathSciNet  MATH  Google Scholar 

  • Marco MD, Forti M, Tesi A (2002) Existence and characterization of limit cycles in nearly symmetric neural networks. IEEE Trans Circuits Syst I 49:979–992

    Article  Google Scholar 

  • Nagi F, Ahmed SK, Zainul Abidin AA, Nordin FH (2010) Fuzzy bang–bang relay controller for satellite attitude control system. Fuzzy Sets Syst 161:2104–2125

    Article  MathSciNet  MATH  Google Scholar 

  • Nguang SK (2006) Robust H-infinity output feedback control design for fuzzy dynamic systems with quadratic D stability constraints: an LMI approach. Inf Sci 176:2161–2191

    Article  MathSciNet  MATH  Google Scholar 

  • Olsson H, Astrom KJ (2001) Friction generated limit cycles, IEEE Trans. Control Syst Technol 9:629–636

    Article  Google Scholar 

  • Padin MS, Robbio FI, Moiola JL, Chen G (2005) On limit cycle approximations in the van der Pol oscillator. Chaos Solitons Fractals 23:207–220

    Article  MATH  Google Scholar 

  • Perng JW (2012) Describing function analysis of uncertain fuzzy vehicle control systems. Neural Comput Appl 21:555–563

    Article  Google Scholar 

  • Precup RE, David RC, Petriu EM, Preitl S, Paul AS (2011) Gravitational search algorithm based tuning of fuzzy control systems with a reduced parametric sensitivity. Soft Computing in Industrial Applications, Springer, Berlin, pp 141–150

    Google Scholar 

  • Sadeghi-Tehran P, Cara AB, Angelov P, Pomares H, Rojas I, Prieto A (2012) Self-evolving parameter-free rule-based controller. In: Proceedings of IEEE conference on fuzzy systems, pp 754–761

  • Shenton AT (1999) Parameter space design of PID limit cycle controllers. In: Proceedings of American control conference, pp 3342–3346

  • Siljak DD (1964) Analysis and synthesis of feedback control systems in the parameter plane. IEEE Trans Ind Appl 83:466–473

    Article  Google Scholar 

  • Siljak DD (1969) Nonlinear systems—the parameter analysis and design. Wiley, New York

    MATH  Google Scholar 

  • Siljak DD (1989) Parameter space methods for robust control design: a guide tour. IEEE Trans Autom Control 34:674–688

    Article  MathSciNet  MATH  Google Scholar 

  • Tanaka K, Manabu S (1993) Fuzzy stability criterion of a class of nonlinear systems. Inf Sci 71:3–26

    Article  MATH  Google Scholar 

  • Tao CW, Taur JS, Chang CW, Chang YH (2012) Simplified type-2 fuzzy sliding controller for wing rock system. Fuzzy Sets Syst 207:111–129

    Article  MathSciNet  MATH  Google Scholar 

  • Ting CS (2006) Stability analysis and design of Takagi–Sugeno fuzzy systems. Inf Sci 176:2817–2845

    Article  MathSciNet  MATH  Google Scholar 

  • Xing J, Shi Z, Dai G (1996) Using describing function to analyze wriggling phenomenon of fuzzy control systems. In: Proceedings of IEEE conference on fuzzy systems, pp 1198–1204

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jau-Woei Perng.

Additional information

Communicated by P. Angelov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perng, JW. Limit-cycle analysis of dynamic fuzzy control systems. Soft Comput 17, 1553–1561 (2013). https://doi.org/10.1007/s00500-012-0971-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-012-0971-9

Keywords

Navigation