Skip to main content
Log in

A hierarchical nonparametric Bayesian approach for medical images and gene expressions classification

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Lately, the enormous generation of databases in almost every aspect of life has created a great demand for new powerful tools for turning data into useful information. Therefore, researchers were encouraged to explore and develop new machine learning ideas and methods. Mixture models are one of the machine learning techniques receiving considerable attention due to their ability to handle efficiently and effectively multidimensional data. In this paper, we represent a solution for two challenging issues: modeling non-Gaussian data and determining the set of relevant features in the data. The problem of modeling non-Gaussian data largely present in several computer vision, image processing, medical, and Bioinformatics applications is accomplished by the development of a generative infinite Gamma mixture model. The Gamma is chosen for its ability to handle long-tailed distributions, which allows it to have a good approximation to data with outliers. The proposed model, which can be viewed as a Dirichlet process mixture of Gamma distributions, takes into account the feature selection problem by determining a set of relevant features for each data cluster which provides better interpretability and generalization capabilities. We propose then an efficient algorithm to learn this infinite model’s parameters by estimating all its posterior quantities of interest using Markov Chain Monte Carlo (MCMC) simulations. Thus, our algorithm is able to perform model selection, parameter learning, and feature selection simultaneously in a single step for the Gamma Mixture model. Furthermore, we show how the model can be used, while comparing it with other popular models in the literature, in two challenging applications namely medical images and gene expressions classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allili MS, Ziou D, Bouguila N, Boutemedjet S (2010) Image and video segmentation by combining unsupervised generalized Gaussian mixture modeling and feature selection. IEEE Trans Circuits Systems Video Technol 20(10):1373–1377

    Article  Google Scholar 

  • Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, Mack D, Levine AJ (1999) Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci 96(12):6745–6750

    Article  Google Scholar 

  • Alto H, Rangayyan RM, Desautels JEL (2005) Content-based retrieval and analysis of mammographic masses. J Electron Imaging 14(2):1–17

    Google Scholar 

  • Aykroyd RG, Green PJ (1991) Global and local priors, and the location of lesions using Gamma-camera imagery. Philos Trans Phys Sci Eng 337(1647):323–342

    Article  MATH  Google Scholar 

  • Bouguila N, Ziou D (2010) A Dirichlet process mixture of generalized Dirichlet distributions for proportional data modeling. IEEE Trans Neural Netw 21(1):107–122

    Article  Google Scholar 

  • Bouguila N, Almakadmeh K, Boutemedjet S (2012) A finite mixture model for simultaneous high-dimensional clustering, localized feature selection and outlier rejection. Expert Systems Appl 39(7):6641–6656

    Article  Google Scholar 

  • Bouguila N, Ziou D (2008) A Dirichlet process mixture of Dirichlet distributions for classification and prediction. In: Proc. of the IEEE Workshop on Machine learning for signal processing (MLSP), pp 297-302

  • Boutemedjet S, Bouguila N, Ziou D (2009) A hybrid feature extraction selection approach for high-dimensional non-Gaussian data clustering. IEEE Trans Pattern Anal Mach Intell 31(8):1429–1443

    Article  Google Scholar 

  • Boys RJ, BoysHenderson DA (2004) A Bayesian approach to DNA sequence segmentation (with discussion). Biometrics 60(3):573– 588

    Article  MATH  MathSciNet  Google Scholar 

  • Brzakovic D, Luo XM, Brzakovic P (1990) An approach to automated detection of tumours in mammograms. IEEE Trans Med Imaging 9(3):233–241

    Article  Google Scholar 

  • Buciu I, Gacsadi A (2009) Gabor wavelet based features for medical image analysis and classification. In: Proc. of the 2nd International Symposium on applied sciences in biomedical and communication technologies, pp 1–4

  • Camastra F (2003) Data dimensionality estimation methods: a survey. Pattern Recogn 36(12):2945–2954

    Article  MATH  Google Scholar 

  • Chan HP, Sahiner B, Lam KL, Petrick N, Helvie MA, Goodsitt MM, Adler DD (1998) Computerized analysis of mammographic microcalcifications in morphological and texture feature spaces. Med Phys 25(10):2007–2019

    Article  Google Scholar 

  • Cho S-B, Jain AK (2003) Machine learning in DNA microarray analysis for cancer classification. In: Proc. of the First Asia-Pacific bioinformatics conference on Bioinformatics, pp 189–198

  • Dahmen J, Theiner T, Keysers D, Ney H, Lehmann T, Wein BB (2000) Classification of radiographs in the ‘image retrieval in medical applications’ system (IRMA). In: Proc. of the 6th International RIAO conference on content-based multimedia information, Access, pp 551–566

  • Elguebaly T, Bouguila N (2011) Infinite generalized Gaussian mixture modeling and applications. In: Proc. of the International conference on image analysis and recognition (ICIAR), pp 201–210

  • Ferguson TS (1973) A Bayesian analysis of some nonparametric problems. Ann Stat 1(2):209–230

    Article  MATH  MathSciNet  Google Scholar 

  • Forstner W (1994) A framework for low level feature extraction. In: Eklundh Jan-Olof (ed) Proc. the European conference on computer vision (ECCV), volume 801 of Lecture Notes in Computer Science. Springer, Berlin Heidelberg, pp 383–394

    Google Scholar 

  • Ghosh JK, Delampady M, Samanta T (2006) An introduction to Bayesian analysis theory and methods. Springer, New York

  • Giger ML, Yin F-F, Doi K, Metz CE, Schmidt RA, Vyborny CJ (2003) Investigation of methods for the computerized detection and analysis of mammographic masses. In: Proc. of the SPIE medical imaging and image processing, pp 183–184

  • Gilks WR, Clayton DG, Spiegelhalter GJ, Best NG, McNeil AJ (1993) Modelling complexity: applications of Gibbs sampling in medicine. J Royal Stat Soc. Series B (Methodological), 55(1):39–52

    Google Scholar 

  • Gilks WR, Wild P (1993) Algorithm AS 287: adaptive rejection sampling from log-concave density functions. Appl Stat 42(4):701–709

    Article  Google Scholar 

  • Glad IK, Sebastiani G (1995) A Bayesian approach to synthetic magnetic resonance imaging. Biometrika 82(2):237–250

    Article  MATH  MathSciNet  Google Scholar 

  • Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh M, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES (1999) Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 286(5439):531–537

    Article  Google Scholar 

  • Haralick R, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Systems Man Cybern SMC 3(6):610–621

    Article  Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning: data mining, inference, and prediction. Springer, New York

  • Hoff PD (2006) Model-based subspace clustering. Bayesian Anal 1(2):321–344

    Article  MathSciNet  Google Scholar 

  • Karlis D, Xekalaki E (2001) Robust inference for finite poisson mixtures. J Stat Plan Inference 93(1–2):93–115

    Article  MATH  MathSciNet  Google Scholar 

  • Katzer M, Kummert F, Sagerer G (2003) Methods for automatic microarray image segmentation. IEEE Trans NanoBiosci 2(4):202–214

    Article  Google Scholar 

  • Keysers D, Dahmen J, Theiner T, Ney H (2000) Experiments with an extended tangent distance. In: Proc. of the International conference on pattern recognition (ICPR), pp 2038–2042

  • Law MHC, Figueiredo MAT, Jain AK (2004) Simultaneous feature selection and clustering using mixture models. IEEE Trans Pattern Anal Mach Intell 26(9):1154–1166

    Article  Google Scholar 

  • Li T, Zhang C, Ogihara M (2004) A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression. Bioinformatics 20(15):2429– 2437

    Article  Google Scholar 

  • Li Y, Dong M, Hua J (2009) Simultaneous localized feature selection and model detection for Gaussian mixtures. IEEE Trans Pattern Anal Mach Intell 31(5):953–960

    Article  Google Scholar 

  • McLachlan GJ, Peel D (2000) Finite mixture models. Wiley, New York

    Book  MATH  Google Scholar 

  • Miller P, Astley S (1992) Classification of breast tissue by texture analysis. Image Vis Comput 10(5):277–283

    Article  Google Scholar 

  • Mladenic D, Brank J, Grobelnik M, Milic-Frayling N (2004) Feature selection using linear classifier weights: interaction with classification models. In: Proc. of the 27th Annual International ACM SIGIR conference on research and development in information retrieval (SIGIR), pp 234–241

  • Neal RM (2000) Markov Chain sampling methods for Dirichlet Process mixture models. J Comput Graph Stat 9:249–265

    MathSciNet  Google Scholar 

  • Neemuchwala H, Hero AO, Carson PL (2001) Feature coincidence trees for registration of ultrasound breast images. In: Proc. of the IEEE International conference on image processing (ICIP), pp III.10–III.13

  • Ojala T, Pietikainen M, Harwood D (1996) A comparative study of texture measures with classification based on featured distributions. Pattern Recogn 29(1):51–59

    Article  Google Scholar 

  • Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  Google Scholar 

  • Paddock SM, Ridgeway G, Lin R, Louis TA (2006) Flexible distributions for triple-goal estimates in two-stage hierarchical models. Comput Stat Data Anal 50(11):3243–3262

    Article  MATH  MathSciNet  Google Scholar 

  • Pappas TN (1992) An adaptive clustering algorithm for image segmentation. IEEE Trans Signal Process 40(4):901–914

    Article  Google Scholar 

  • Powell D, Fair J, LeClaire R, Moore L, Thompson D (2005) Sensitivity analysis of an infectious disease model. In: Proc. of the International system dynamics conference, pp 17–21

  • Quinlan JR (1996) Improved use of continuous attributes in C4.5. J Artif Intell Res 4(1):77–90

    MATH  Google Scholar 

  • Raftery AE, Lewis SM (1992) One long run with diagnostics: implementation strategies for Markov Chain Monte Carlo. Stat Sci 7(4):493–497

    Article  Google Scholar 

  • Raftery AE, Lewis SM (1996) Implementing MCMC. In: Spiegelhalter DJ, Gilks WR, Richardson S (eds) Markov Chain Monte Carlo in Practice. Chapman and Hall, London, pp 115–130

    Google Scholar 

  • Rangayyan RM, Mudigonda NR, Desautels JEL (2000) Boundary modelling and shape analysis methods for classification of mammographic masses. Med Biol Eng Comput 38(5):487–496

    Article  Google Scholar 

  • Rangayyan RM, El-Faramawy NM, Desautels JEL, Alim OA (2000) Measures of acutance and shape for classification of breast tumors. IEEE Trans Med Imaging 16(6):799–810

    Article  Google Scholar 

  • Rasmussen CE (2000) The infinite gaussian mixture model. In: Advances in neural information processing systems (NIPS), pp 554–560

  • Robert CP (2007) The Bayesian choice from decision-theoretic foundations to computational implementation, second edition. Springer, New York

  • Sahiner BS, Chan HP, Petrick N, Wagner RF, Hadjiiski L (2000) Feature selection and classifier performance in computer-aided diagnosis: the effect of finite sample size. Med Phys 27(7):1509–1522

    Article  Google Scholar 

  • Singh D, Febbo PG, Ross K, Jackson DG, Manola J, Ladd C, Tamayo P, Renshaw AA, D’Amico AV, Richie JP, Lander ES, Loda M, Kantoff PW, Golub TR, Sellers WR (2002) Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1(2):203–209

    Article  Google Scholar 

  • Spiegelhalter DJ, Knill-Jones RP (1984) Statistical and knowledge-based approaches to clinical decision-support systems, with an application in gastroenterology (with discussion). J Royal Stat Soc. Series A (General), 147(1):35–77

    Google Scholar 

  • Suri JS, Rangayyan RM (2006) Recent advances in breast imaging, mammography, and computer-aided diagnosis of breast cancer. SPIE Press, Washington

  • Tagare HD, Jaffe CC, Duncan JJ (1997) Medical image databases: a content-based retrieval approach. J Am Med Inf Assoc 4(3):184–198

    Article  Google Scholar 

  • Theodoridis S, Koutroumbas K (2005) Pattern recognition. Elsevier Academic Press, New York

  • Tuceryan M, Jain AK (1998) Texture analysis. In: The Handbook of pattern recognition and computer vision, pp 207–248

  • Vapnik V (2000) The nature of statistical learning theory. Springer, New York

  • Welsh JB, Sapinoso LM, Su AI, Kern SG, Wang-Rodriguez J, Moskaluk CA, Frierson HF Jr, Hampton GM (2001) Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer. Cancer Res 61(16):5974–5978

    Google Scholar 

  • Wu X, Kumar V, Quinlan JR, Ghosh J, Yang Q, Motoda H, McLachlan G, Ng A, Liu B, Yu P et al (2008) Top 10 algorithms in data mining. Knowl Inf Systems 14(1):1–37

    Article  Google Scholar 

  • Wu X, Yu K, Wang H, Ding W (2010) Online streaming feature selection. In: Proc. of the 27th International conference on machine learning (ICML), pp 1159–1166

  • Xu W, Wang W, Zhang X, Wang L, Feng H (2008) SDED: A novel filter method for cancer related gene selection. Bioinformation 2(7):301–303

    Article  Google Scholar 

  • Yonghong H, Englehart KB, Hudgins B, Chan ADC (2005) A Gaussian mixture model based classification scheme for myoelectric control of powered upper limb prostheses. IEEE Trans Biomed Eng 52(11):1801–1811

    Article  Google Scholar 

  • Yukinawa N, Oba S, Kato K, Taniguchi K, Iwao-Koizumi K, Tamaki Y, Noguchi S, Ishii S (1996) A multi-class predictor based on a probabilistic model: application to gene expression profiling-based diagnosis of thyroid tumors. BMC Genomics 7(190)

  • Zadeh HS, Rad FR, Nejad SP (2004) Comparison of multiwavelet, wavelet, Haralick, and shape features for microcalcification classification in mammograms. Pattern Recogn 37(10):1973–1986

    Article  Google Scholar 

  • Zink S, Jaffe CC (1993) Medical imaging databases. Investig Radiol 28(4):366–372

    Article  Google Scholar 

  • Ziou D, Bouguila N, Allili MS, El Zaart A (2009) Finite Gamma mixture modeling using minimum message length inference: Application to SAR image analysis. Int J Remote Sens 30(3):771–792

    Article  Google Scholar 

  • Ziou D, Bouguila N (2004) Unsupervised learning of a finite Gamma mixture using MML: Application to SAR image analysis. In: Proc. of the International conference on pattern recognition (ICPR), pp 68–71

  • Zou F, Zheng Y, Zhou Z, Agyepong K (2008) Gradient vector flow field and mass region extraction in digital mammograms. In: Proc. of the 21st IEEE International symposium on computer-based medical systems, pp 41–43

Download references

Acknowledgments

The completion of this research was made possible thanks to the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nizar Bouguila.

Additional information

Communicated by Y. Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elguebaly, T., Bouguila, N. A hierarchical nonparametric Bayesian approach for medical images and gene expressions classification. Soft Comput 19, 189–204 (2015). https://doi.org/10.1007/s00500-014-1242-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-014-1242-8

Keywords

Navigation