Skip to main content
Log in

A note on standard completeness for some extensions of uninorm logic

  • Foundations
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

We prove standard completeness for uninorm logic extended with knotted axioms. This is done following a proof-theoretical approach, based on the elimination of the density rule in suitable hypersequent calculi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avron A (1987) A constructive analysis of RM. J Symb Log 52(4):939–951

    Article  MATH  MathSciNet  Google Scholar 

  • Avron A (1991) Hypersequents, logical consequence and intermediate logics for concurrency. Ann Math Artif Intell 4:225–248

    Article  MATH  MathSciNet  Google Scholar 

  • Baldi P, Ciabattoni A, Spendier L (2012) Standard completeness for extensions of MTL: an automated approach. In: Ong L, de Queiroz R (eds) Workshop on logic, language, information and computation (WoLLIC 2012). LNCS 7456. Springer, Heidelberg, pp 154–167

  • Ciabattoni A, Esteva F, Godo L (2002) T-norm based logics with n-contraction. Neural Netw World 12(5):441–452

    Google Scholar 

  • Ciabattoni A, Galatos N, Terui K (2008) From axioms to analytic rules in nonclassical logics. In: IEEE symposium on logic in computer science (LICS 2008). IEEE, pp 229–240

  • Ciabattoni A, Galatos N, Terui K (2011) Macneille completions of FL-algebras. Algebra universalis 66(4):405–420

    Article  MATH  MathSciNet  Google Scholar 

  • Ciabattoni A, Metcalfe G (2007) Density elimination and rational completeness for first-order logics. In: Symposium on logical foundations of computer science (LFCS 2007), LNCS 4514. pp 132–146

  • Ciabattoni A, Metcalfe G (2008) Density elimination. Theor Comput Sci 403(2–3):328–346

    Article  MATH  MathSciNet  Google Scholar 

  • Cintula P, Esteva F, Gispert J, Godo L, Montagna F, Noguera C (2009) Distinguished algebraic semantics for t-norm based fuzzy logics: methods and algebraic equivalencies. Annals Pure Appl Logic 160(1):53–81

    Article  MATH  MathSciNet  Google Scholar 

  • Esteva F, Gispert J, Godo L, Montagna F (2002) On the standard and rational completeness of some axiomatic extensions of the monoidal t-norm logic. Studia Logica 71(2):199–226

    Article  MATH  MathSciNet  Google Scholar 

  • Gabbay DM, Metcalfe G (2007) Fuzzy logics based on [0, 1)-continuous uninorms. Arch Math Log 46(5–6):425–449

    Article  MATH  MathSciNet  Google Scholar 

  • Galatos N, Jipsen P, Kowalski T, Ono H (2007) Residuated lattices: an algebraic glimpse at substructural logics: studies in logics and the foundations of mathematics. Elesevier, Amsterdam

    Google Scholar 

  • Hájek P (1998) Metamathematics of fuzzy logic. Kluwer, Dordrecht

    Book  MATH  Google Scholar 

  • Horčík R (2011) Algebraic semantics: semilinear FL-algebras. In: Cintula P, Hájek P, Noguera C (eds) Handbook of mathematical fuzzy logic-volume 1, volume 37 of studies in logic. Mathematical logic and foundations. College Publications, London, pp 103–207

  • Hori R, Ono H, Schellinx H (1994) Extending intuitionistic linear logic with knotted structural rules. Notre Dame J Form Logic 35(2):219–242

    Article  MATH  MathSciNet  Google Scholar 

  • Jenei S, Montagna F (2002) A proof of standard completeness for Esteva and Godo’s logic MTL. Studia Logica 70(2):183–192

    Google Scholar 

  • Metcalfe G (2011) Proof theory for mathematical fuzzy logic. In: Cintula P, Hájek P, Noguera C (eds) Handbook of mathematical fuzzy logic-volume 1, volume 37of studies in logic. Mathematical logic and foundations. College Publications, London, pp 103–207

  • Metcalfe G, Montagna F (2007) Substructural fuzzy logics. J Symb Log 72(3):834–864

    Article  MATH  MathSciNet  Google Scholar 

  • Metcalfe G, Olivetti N, Gabbay D (2008) Proof theory for fuzzy logics, volume 36 of Springer series in applied logic. Springer, New York

  • Takeuti G, Titani S (1984) Intuitionistic fuzzy logic and intuitionistic fuzzy set theory. J Symb Log 49(3):851–866

    Article  MATH  MathSciNet  Google Scholar 

  • Wang SM (2012) Uninorm logic with the n-potency axiom. Fuzzy Sets Syst 205:116–126

    Article  MATH  Google Scholar 

Download references

Acknowledgments

I would like to thank the anonymous referees for their comments, which helped me to substantially improve the final form of the paper, and David Cerna, for linguistic advice. Furthermore, I would like to thank my supervisor Agata Ciabattoni for her guidance and advice throughout the whole preparation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Baldi.

Additional information

Communicated by A. Ciabattoni.

Work supported by the project FWF START Y544-N23.

Appendix: Proof of the derivability of \(\alpha _1,\ldots , \alpha _k \rightarrow \alpha _1^k \vee \dots \vee \alpha _k^k\) in \(UL\)

Appendix: Proof of the derivability of \(\alpha _1,\ldots , \alpha _k \rightarrow \alpha _1^k \vee \dots \vee \alpha _k^k\) in \(UL\)

First, we show that \(\text {HUL}\) derives the hypersequent \(\alpha _1,\dots , \alpha _k\) \( \Rightarrow \alpha _1^k \, | \, \dots \, | \, \alpha _1, \dots , \alpha _{k} \Rightarrow \alpha _{k}^{k}\) . We proceed by induction on \(k\). For \(k=2\), we have

figure n

For the induction step, we assume to have a derivation \(d\) of \(\alpha _1,\dots , \alpha _{k-1} \Rightarrow \alpha _1^{k-1} \, | \, \dots \, | \, \alpha _1,\dots , \alpha _{k-1} \Rightarrow \alpha _{k-1}^{k-1}\) in \(\text {HUL}\). First, we show that for any \(\alpha _i\) with \(i=\{1,\dots , k-1\}\) we have a derivation \(d_i\) in \(\text {HUL}\) of the hypersequent \(\alpha _k,\alpha _i^{k-1} \Rightarrow \alpha _k^k \, | \, \alpha _k \Rightarrow \alpha _i\) .

figure o

Consider now the following derivation. For space reasons, we abbreviate the hypersequent \(\alpha _1,\dots , \alpha _{k-1} \Rightarrow \alpha _2^{k-1} \, | \, \dots \, | \, \alpha _1,\dots , \alpha _{k-1} \Rightarrow \alpha _{k-1}^{k-1}\) with \(H\).

figure p

Starting from the end-hypersequent above and repeating similar derivations for any of the \(d_i\), we eventually obtain the desired derivation of

$$\begin{aligned} \alpha _1,\dots , \alpha _k \Rightarrow \alpha _1^k \, | \, \dots \, | \, \alpha _1, \dots , \alpha _{k} \Rightarrow \alpha _{k}^{k} \end{aligned}$$

From this, we get:

figure q

Finally, by the completeness of \(\text {HUL}\) with respect to \(\text {UL}\) (see Metcalfe and Montagna 2007), we have that \(\vdash _{UL} (\alpha _1,\ldots , \alpha _k) \rightarrow (\alpha _1^k \vee \dots \vee \alpha _k^k)\). This completes the proof.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baldi, P. A note on standard completeness for some extensions of uninorm logic. Soft Comput 18, 1463–1470 (2014). https://doi.org/10.1007/s00500-014-1265-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-014-1265-1

Keywords

Navigation