Skip to main content
Log in

A hybrid learning method composed by the orthogonal least-squares and the back-propagation learning algorithms for interval A2-C1 type-1 non-singleton type-2 TSK fuzzy logic systems

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

The purpose of this paper is to present a hybrid learning method for interval A2-C1 type-1 non-singleton type-2 TSK fuzzy logic system that uses the recursive orthogonal least-squares algorithm to tune the type-1 consequent parameters, and the back-propagation algorithm to tune the interval type-2 antecedent parameters. Based on the combination of these two training algorithms the new hybrid learning method changes the interval type-2 fuzzy model parameters adaptively and minimizes the proposed error function as the new type-1 non-singleton input–output data pairs are processed. Its antecedent sets are interval type-2 fuzzy sets, its consequent sets are type-1 fuzzy sets, and its inputs are type-1 non-singleton fuzzy numbers with uncertain standard deviations. Comparison with the non-hybrid interval A2-C1 type-1 non-singleton type-2 Takagi–Sugeno–Kang fuzzy logic system that only uses the back-propagation algorithm for both antecedent and consequent parameter’s adaptation demonstrates that the proposed hybrid algorithm is a well-performing nonlinear adaptation that enables the interval type-2 fuzzy model to optimally match the nonlinear behavior of the process. The application of the interval type-2 fuzzy logic as adaptable predictor using the proposed hybrid learning method was constructed for the modeling and prediction of the transfer bar surface temperature in an industrial hot strip mill facility. Experimental results demonstrated that this method improves the temperature prediction performance of the interval A2-C1 type-1 non-singleton type-2 Takagi–Sugeno–Kang fuzzy logic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abbadi A, Nezli L, Boukhetala D (2013) A nonlinear voltage controller based on interval type 2 fuzzy logic control system for multimachine power system. Electr Power Energy Syst 45:456–467

    Article  Google Scholar 

  • Aguado A (2000) Temas de Identificación y Control Adaptable. La Habana, Cuba, Instituto de Cibernética, Matemáticas y Física

  • Aliev R, Pedrycz W (2009) Fundamentals of a fuzzy-logic-based generalized theory of stability. IEEE Trans Syst Man Cybern B Cybern 39:971–989

    Article  Google Scholar 

  • Aliev RA, Pedrycz W, Guirimov BG, Aliev RR, Ilhan U, Babagil M, Mammadli S (2011) Type-2 fuzzy neural networks with fuzzy clustering and differential evolution optimization. Inform Sci 181:1591–1608

    Article  MathSciNet  Google Scholar 

  • Anastasakis V, Mort N (2003) Prediction of the GSP-USD exchange rate using statistical and neural network models. In: Proceedings of the IASTED international conference on artificial intelligence and applications, pp 493–498

  • Biglarbegian M, Melek W, Mendel J (2011a) On the robustness of type-1 and type-2 fuzzy logic systems in modeling. Inform Sci 181:1325–1347

    Article  MATH  MathSciNet  Google Scholar 

  • Biglarbegian M, Melek WW, Mendel JM (2011b) Design of novel interval type-2 fuzzy controllers for modular and reconfigurable robots: theory and experiments. IEEE Trans Ind Electron 58:1371–1384

    Article  Google Scholar 

  • Biglarbegian M, Melek W, Mendel JM (2011c) Design of novel interval type-2 fuzzy controllers for modular and reconfigurable robots. IEEE Trans Ind Electron 58:1371–1384

    Article  Google Scholar 

  • Boumella N, Djouani K, Boulemden M (2012) A robust interval type-2 TSK fuzzy logic system design based on Chebyshev fitting. Int J Control Autom Syst 10(4):727–736

    Article  Google Scholar 

  • Castillo O, Melin P (2003) A new hybrid approach for plant monitoring and diagnostics using type-2 fuzzy logic and fractal theory. In: Proceedings of the FUZZ’ 2003, pp 102–107

  • Castillo O, Huesca G, Valdez F (2005) Evolutionary computing for optimizing type-2 fuzzy systems in intelligent control of non-linear dynamic plants. In: Proceedings of the IEEE NAFIPS 05 international conference, pp 247–251

  • Castillo O, Melin P, Alanis A, Montiel O, Sepúlveda R (2011) Optimization of interval type-2 fuzzy logic controllers using evolutionary algorithms. Soft Comput 15:1145–1160

    Article  Google Scholar 

  • Castro JR, Castillo O, Melin P, Rodriguez A, Mendoza O (2009) Universal approximation of a class of interval type-2 fuzzy neural networks illustrated with the case of non-linear identification. In: Proceedings of the IFSA-EUSFLAT, pp 1382–1387

  • Cázarez-Castro N, Aguilar LT, Castillo O (2010) Fuzzy logic control with genetic membership function parameters optimization for the output regulation of a servomechanism with nonlinear backlash. Expert Syst Appl 37:4368–4378

    Article  Google Scholar 

  • Chang X-H, Yang G-H (2010) Relaxed stabilization conditions for continuous-time Takagi-Sugeno fuzzy control systems. Inform Sci 180:3273–3287

    Article  MATH  MathSciNet  Google Scholar 

  • General electric (1993) Models Reference Manual 1. Roanoke, VA

  • Gerardo GM Méndez, Colás R, Leduc L, Lopez-Juarez I, Longoria R (2011) Finishing mill thread speed setup and control by interval type-1 non-singleton type-2 fuzzy logic systems. Ironmak Steelmak 39(5):342–354

  • Hagras HA (2004) A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots. IEEE Trans Fuzzy Syst 12:524–539

    Article  Google Scholar 

  • Hernández MA, Méndez GM (2006) Modeling and prediction of the MXN-USA exchange rate using interval singleton type-2 fuzzy logic systems. In: Proceedings of the IEEE international conference on fuzzy systems, pp 10556–10559

  • Hsiao MY, Li TH, Lee JZ, Chao CH, Tsai SH (2008) Design of interval type-2 fuzzy sliding-mode controller. Inform Sci 178:1696–1716

    Article  MATH  MathSciNet  Google Scholar 

  • Hyun C-H, Park C-W, Kim S (2010) Takagi-Sugeno fuzzy model based indirect adaptive fuzzy observer and controller design. Inform Sci 180:2314–2327

    Article  MATH  MathSciNet  Google Scholar 

  • Jafarzadeh S, Fdali MS (2013) On the stability and control of continuous-time TSK fuzzy systems. IEEE Trans Cybern 43:1073–1087

    Article  Google Scholar 

  • Jafarzadeh S, Lascu C, Fadali MS (2012) State stimation of induction motor drives using the unscented kalman filter. IEEE Trans Ind Electron 59:4207–4216

    Article  Google Scholar 

  • Jafarzadeh S, Fadal MS, Evrenosoglu CY (2013) Solar power prediction using interval type-2 TSK modeling. IEEE Trans Sustain Energy 4:333–339

    Article  Google Scholar 

  • Jang J-SR, Dun C-T (1995) Neuro-fuzzy modeling and control. Proc IEEE 83:378–406

  • Jang J-SR, Sun C-T, Mizutani E (1997) Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence. Prentice-Hall, Upper Saddle River

    Google Scholar 

  • John RI (2002) Embedded interval valued type-2 fuzzy sets. In: Proceedings of the 2002 IEEE international conference on fuzzy systems 1 & 2, pp 1316–1321

  • Juang CF, Chen CY (2013) Data-driven interval type-2 neural fuzzy system with high learning accuracy and improved model interpretability. IEEE Trans Cybern 43(6):1781–1795

    Article  Google Scholar 

  • Karnik NN, Mendel JM (2001) Centroid of a type-2 fuzzy set. Inform Sci 132:195–220

    Article  MATH  MathSciNet  Google Scholar 

  • Khosravi A, Nahavandi S, Creighton D, Srinivasan D (2012) Interval type-2 fuzzy logic systems for load forecasting: a comparatuve study. IEEE Trans Power Syst 27:1274–1282

    Article  Google Scholar 

  • Lam HK, Li H, Deters C (2014) Control design for interval type-2 fuzzy systems under imperfect premise matching. IEEE Trans Ind Electron 61(2):956–968

    Article  Google Scholar 

  • Leal C, Castillo O, Melin P, Rodríguez A (2011) Simulation of the bird age-structured population growth based on an interval type-2 fuzzy cellular structure. Inform Sci 181:519–535

    Article  MathSciNet  Google Scholar 

  • Lee YH, Lee CH (2011a) Stable learning mechanism for novel Takagi-Sugeno-Kang type interval-valued fuzzy systems. Proceedings of the international multi-conference of engineering and computer science 1:1–6

    Google Scholar 

  • Lee CH, Lee YH (2011b) Nonlinear system identification using Takagi-Sugeno-Kang type interval-valued fuzzy systems via stable learning mechanism. IAENG Int J Comput Sci 38:249–260

    Google Scholar 

  • Lee DH, Park JB, Joo YH (2012) A fuzzy Lyapunov approach to estimating the domain of attraction for continuous-time Takagi-Sugeno fuzzy systems. Inform Sci 185:230–248

    Article  MATH  MathSciNet  Google Scholar 

  • Lendasse A, de Boot E, Wertz V, Verleysen VM (2000) Non-linear financial time series forecasting: application to the Bel 20 stock market index. Eur J Econ Social Syst 14:81–91

    Article  MATH  Google Scholar 

  • Li CD, Yi JQ (2010) Sirms based interval type-2 fuzzy inference systems: properties and applications. Int J Innovat Comput Inform Control 6:4019–4028

    Google Scholar 

  • Li Y, Du Y (2012) Indirect adaptive fuzzy observer and controller design based on interval type-2 T-S fuzzy model. Appl Math Model 36:1558–1569

    Article  MATH  MathSciNet  Google Scholar 

  • Li C, Zhang G, Wang M (2013a) Data-driven modeling and optimization of thermal comfort and energy consumption using type-2 fuzzy method. Soft Comput 17:2075–2088

    Article  Google Scholar 

  • Li C, Zhang G, Yi J, Wang M (2013b) Uncertainty degree and modeling of interval type-2 fuzzy sets: definition, method and application. Comput Math Appl 66:1822–1835

    Article  MathSciNet  Google Scholar 

  • Liang Q, Mendel JM (2000) Interval type-2 fuzzy logic systems: theory and design. Trans Fuzzy Syst 8:535–550

    Article  Google Scholar 

  • Linda O, Manic M (2011a) Uncertainty-robust design of interval type-2 fuzzy logic controller for delta parallel robot. IEEE Trans Ind Informat 7(4):661–670

    Article  Google Scholar 

  • Linda O, Manic M (2011b) Interval type-2 fuzzy voter design for fault tolerant systems. Inform Sci 181:2933–2950

    Article  MathSciNet  Google Scholar 

  • Liu X, Mendel JM (2011) Connect Karnik-Mendel algorithms to root-finding for computing the centroid of an interval type-2 fuzzy set. IEEE Trans Fuzzy Syst 19(4):652–665

    Article  Google Scholar 

  • Liu X, Mendel JM, Wu D (2012) Study on enhanced Karnik-Mendel algorithms: initialization explanations and computation improvements. Inform Sci 184:75–91

    Article  MATH  MathSciNet  Google Scholar 

  • Lou CW, Dong MC (2012) Modeling data uncertainty on electric load forecasting based on type-2 fuzzy logic set theory. Eng Appl AI 25:1567–1576

    Google Scholar 

  • Lui F (2008) An efficient centroid type-reduction strategy for general type-2 fuzzy logic system. Inform Sci 178:2224–2236

    Article  MathSciNet  Google Scholar 

  • Melin P, Castillo O (2007) An intelligent hybrid approach for industrial quality control combining neural networks, fuzzy logic and fractal theory. Inform Sci 177:1543–1557

    Article  Google Scholar 

  • Melin P, Mendoza O, Castillo O (2010) An improved method for edge detection based on interval type-2 fuzzy logic. Expert Syst Appl 37:8527–8535

    Article  Google Scholar 

  • Mendel JM (2001) Uncertain rule-based fuzzy logic systems: introduction and new directions. Prentice-Hall, Upper Saddle River NJ

    Google Scholar 

  • Mendel JM, John RI (2002) Type-2 fuzzy sets made simple. IEEE Trans Fuzzy Syst 10:117–127

    Article  Google Scholar 

  • Mendel JM (2007) Advances in type-2 fuzzy sets and systems. Inform Sci 177:84–110

    Article  MATH  MathSciNet  Google Scholar 

  • Mendel JM (2013) On KM algorithms for solving type-2 fuzzy set problems. IEEE Trans Fuzzy Syst 21(3):426–446

    Article  Google Scholar 

  • Mendel JM, Wu H (2007) New results about the centroid of an interval type-2 fuzzy set, including the centroid of a fuzzy Mendel granule. Inform. Sci. 177:360–377

    Article  MATH  MathSciNet  Google Scholar 

  • Mendel JM, Liu X (2013) Simplified interval type-2 fuzzy logic systems. IEEE Trans Fuzzy Syst 21(6):1056–1069

    Article  Google Scholar 

  • Méndez GM, Juárez IL (2005a) Orthogonal back-propagation hybrid-learning algorithm for interval type-1 non-singleton type-2 fuzzy logic systems. WSEAS Trans Syst 3:1109–2777

  • Méndez GM, Lopez-Juarez I (2005b) First-order interval type-2 TSK fuzzy logic systems using a hybrid-learning algorithm. WSEAS Trans Comput 4:378–384

  • Méndez GM, Hernandez MA (2009) Hybrid-learning for interval type-2 fuzzy systems based on orthogonal least-squares and back-propagation methods. Inform Sci 179:2146–2157

    Article  Google Scholar 

  • Mendez GM, Hernandez MA (2010) Interval type-1 non-singleton type-2 fuzzy logic systems are type-2 adaptive neuro-fuzzy inference systems. Int J Reason Intell Syst 2:95–99

    Google Scholar 

  • Mendez GM, Hernandez MA (2013) Hybrid-learning mechanism for interval A2–C1 type-2 non-singleton type-2 Takagi-Sugeno-Kang fuzzy logic systems. Inform Sci 220:149–169

    Article  Google Scholar 

  • Méndez GM, Cavazos A, Soto R, Leduc L (2006) Entry temperature prediction of a HSM by hybrid-learning type-2 FLS. J Intell Fuzzy Syst 17:583–596

    Google Scholar 

  • Mendez GM, Leduc-Lezama L, Colas R, Murillo-Perez G, Ramirez-Cuellar J, Lopez JJ (2010) Modeling and control of the coiling temperature using type-2 fuzzy logic systems. Ironmak Steelmak 37(2):126–134

    Article  Google Scholar 

  • Ren Q, Balazinski M, Baron L (2011) Type-2 TSK fuzzy logic systems and its type-1 counterpart. Int J Comput Appl 20:8–13

    Google Scholar 

  • Ren Q, Balazinski M, Baron L (2012) High-order interval type-2 Takagi-Sugeno-Kang fuzzy logic system and its application in acoustic emission signal modeling in turning process. Int J Adv Manuf Technol 63:1057–1063

    Article  Google Scholar 

  • Sepulveda R, Castillo O, Melin P, Montiel O (2007a) An efficient computational method to implement type-2 fuzzy logic in control applications. Adv Soft Comput 41:45–52

    Article  Google Scholar 

  • Sepulveda R, Castillo O, Melin P, Rodriguez-Diaz A, Montiel O (2007b) Experimental study of intelligent controllers under uncertainty using tpe-1 and type-2 fuzzy logic. Inform Sci 177:2023–2048

    Article  Google Scholar 

  • Sepulveda R, Montiel O, Castillo O, Melin P (2012) Embedding a high speed interval type-2 fuzzy controller for a real plant into FPGA. Appl Soft Comput 12:988–998

    Article  Google Scholar 

  • Sheng L, Ma X (2014) Stability analysis and controller design of interval type-2 fuzzy systems with time delay. Int J Syst Sci 45(5):977–993

    Article  MATH  MathSciNet  Google Scholar 

  • Sonbol AH, Fadali MS, Jafarzadeh S (2012) TSK fuzzy function approximators: design and accuracy analysis. IEEE Trans Syst Man Cybern B Cybern 42:702–712

    Article  Google Scholar 

  • Tao CW, Taur J, Chuang CC, Chang CW, Chang YH (2011) An approximation of interval type-2 fuzzy controllers using fuzzy ratio switching type-1 fuzzy controllers. IEEE Trans Syst Man Cybern B Cybern 41(3):828–839

    Article  Google Scholar 

  • Tavoosi J, Badamchizadeh MA (2013) A class of type-2 fuzzy neural networks for nonlinear dynamical system identification. Neural Comput Appl 23:707–717

    Article  Google Scholar 

  • Taylor BN, Kuyatt CE (1994) Guidelines for evaluating and expressing the uncertainty of NIST measurement results. NIST, Gaitherburg MD, Technical note 1297

  • Wang LX (2001) Adaptive fuzzy systems and control. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Wu D (2012) On the fundamental differences between interval type-2 and type-1 fuzzy logic controllers. IEEE Trans Fuzzy Syst 20(5):832–848

    Article  Google Scholar 

  • Wu D, Mendel JM (2007) Uncertainty measures for interval type-2 fuzzy sets. Inform Sci 177:5378–5393

    Article  MATH  MathSciNet  Google Scholar 

  • Wu D, Mendel JM (2011) On the continuity of type-1 and interval type-2 fuzzy logic systems. IEEE Trans Fuzzy Syst 19(1):179–192

    Article  Google Scholar 

  • Wu W, Li L, Yang J, Liu Y (2010) A modified gradient-based neuro-fuzzy learning algorithm and its convergence. Inform Sci 180:1630–1642

    Article  MATH  MathSciNet  Google Scholar 

  • Wu D, Mendel JM, Coupland S (2012) Enhanced interval approach for encoding words into interval type-2 fuzzy sets and its convergence analysis. IEEE Trans Fuzzy Syst 20(3):499–513

    Article  Google Scholar 

  • Yang F, Yuan R, Yi J (2013) Direct adaptive type-2 fuzzy neural network control for a generic hypersonic flight vehicle. Soft Comput 17:2053–2064

  • Zarandi MHF, Torshizi AD, Turksen IB, Rezaee B (2013) A new indirect approach to the type-2 fuzzy systems modeling and design. Inform Sci 232:346–365

    Article  Google Scholar 

  • Zhang X, Wang C, Li D, Zhou X, Yang D (2011) Robust stability of impulsive Takagi-Sugeno fuzzy systems with parametric uncertainties. Inform Sci 181:5278–5290

    Article  MATH  MathSciNet  Google Scholar 

  • Zheng G, Wang J, Jiang L (2009) Research on type-2 TSK fuzzy logic systems. Fuzzy Inform Eng AISC 62:491–500

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Castillo.

Additional information

Communicated by W. Pedrycz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de los Angeles Hernandez, M., Melin, P., Méndez, G.M. et al. A hybrid learning method composed by the orthogonal least-squares and the back-propagation learning algorithms for interval A2-C1 type-1 non-singleton type-2 TSK fuzzy logic systems. Soft Comput 19, 661–678 (2015). https://doi.org/10.1007/s00500-014-1287-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-014-1287-8

Keywords

Navigation