Skip to main content

Advertisement

Log in

Analytic neural network model of a wind turbine

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In this paper, an analytic neural network model is introduced for the modeling of the wind turbine behavior. The proposed hybrid method is the combination of the analytic and neural network models. The neural network model is used as a compensator to improve the approximation of the analytic model. It is guaranteed that the error of the analytic neural network model is smaller than the error of the analytic model. Two experiments show the effectiveness of the proposed technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Balaguer-Ballester E, Bouchachia H, Lapish CC (2013) Identifying sources of non-stationary neural ensemble dynamics. BMC Neurosci 14(Suppl 1):15

    Google Scholar 

  • Bordignon F, Gomide F (2014) Uninorm based evolving neural networks and approximation capabilities. Neurocomputing 127:13–20

    Article  Google Scholar 

  • Brodka P, Saganowski S, Kazienko P (2013) GED: the method for group evolution discovery in social networks. Soc Netw Anal Min 3:1–14

    Article  Google Scholar 

  • Buchachia A (2012) Dynamic clustering. Evol Syst 3(3):133–134

    Article  Google Scholar 

  • Chang PC, Lin JJ, Dzan WY (2012) Forecasting of manufacturing cost in mobile phone products by case-based reasoning and artificial neural network models. J Intell Manuf 23:517–531

    Article  Google Scholar 

  • García-Cuesta E, Iglesias JA (2012) User modeling: through statistical analysis and subspace learning. Expert Syst Appl 39(5):5243–5250

    Article  Google Scholar 

  • Hambli R, Katerchi H, Benhamou CL (2011) Multiscale methodology for bone remodelling simulation using coupled finite element and neural network computation. Biomech Model Mechanobiol 10:133–145

    Article  Google Scholar 

  • Jang JSR, Sun CT (1996) Neuro-fuzzy and soft computing. Prentice Hall, NJ 07458

    Google Scholar 

  • Lughofer E, Trawinski B, Trawinski K, Kempa O, Lasota T (2011) On employing fuzzy modeling algorithms for the valuation of residential premises. Inf Sci 181:5123–5142

    Article  Google Scholar 

  • Lughofer E (2011) Evolving fuzzy systems—methodologies., Advanced Concepts and ApplicationsSpringer, Berlin

    MATH  Google Scholar 

  • Lughofer E (2012) Sigle pass active learning with conflict and ignorance. Evol Syst 3:251–271

    Article  Google Scholar 

  • Maciel L, Lemos A, Gomide F, Ballini R (2012) Evolving fuzzy systems for pricing fixed income options. Evol Syst 3:5–18

    Article  Google Scholar 

  • Marques Silva A, Caminhas W, Lemos A, Gomide F (2014) A fast learning algorithm for evolving neo-fuzzy neuron. Appl Soft Comput 14(B):194–209

    Google Scholar 

  • Muhando EB, Senjyu T, Yona A, Kinjo H, Funabashi T (2007) Disturbance rejection by dual pitch control and self-tuning regulator for wind turbine generator parametric uncertainty compensation. IET Control Theory Appl 1(5):1431–1440

    Article  Google Scholar 

  • Musiał K, Kazienko P (2013) Social networks on the Internet. World Wide Web 16:31–72

    Google Scholar 

  • Naci-Celik A (2011) Artificial neural network modelling and experimental verification of the operating current of mono-crystalline photovoltaic modules. Solar Energy 85:2507–2517

    Google Scholar 

  • Pratama M, Anavatti SG, Angelov PP, Lughofer E (2014a) PANFIS: a novel incremental learning machine. IEEE Trans Neural Netw Learn Syst 25(1):55–68

    Article  Google Scholar 

  • Pratama M, Anavatti SG, Lughofer E (2014b) GENEFIS: towards an effective localist network. IEEE Trans Fuzzy Syst. doi:10.1109/TFUZZ.2013.2264938

  • Perez-Cruz JH, Rubio JJ, Pacheco J, Soriano E (2014) State estimation in MIMO nonlinear systems subject to unknown deadzones using recurrent neural networks. Neural Comput Appl. doi:10.1007/s00521-013-1533-5

  • Perez-Cruz JH, Chairez I, Rubio JJ, Pacheco J (2014) Identification and control of a class of nonlinear systems with nonsymmetric deadzone using recurrent neural networks. IET Control Theory Appl 8(3):183–192

    Article  MathSciNet  Google Scholar 

  • Ravi-Kiran T, Rajput SPS (2011) An effectiveness model for an indirect evaporative cooling (IEC) system: comparison of artificial neural networks (ANN), adaptive neuro-fuzzy inference system (ANFIS) and fuzzy inference system (FIS) approach. Appl Soft Comput 11:3525–3533

    Article  Google Scholar 

  • Rubio JJ (2014) Evolving intelligent algorithms for the modelling of brain and eye signals. Appl Soft Comput 14(B):259–268

    Article  Google Scholar 

  • Rubio JJ, Angelov P, Pacheco J (2011) An uniformly stable backpropagation algorithm to train a feedforward neural network. IEEE Trans Neural Netw 22(3):356–366

    Article  Google Scholar 

  • Rubio JJ, Perez-Cruz JH (2014) Evolving intelligent system for the modelling of nonlinear systems with dead-zone input. Appl Soft Comput 14(B):289–304

    Article  Google Scholar 

  • Rubio JJ, Soriano LA, Yu W (2014) Dynamic model of a wind turbine for the electric energy generation. Math Probl Eng 2014:1–8

    Google Scholar 

  • Rusinowski H, Stanek W (2010) Hybrid model of steam boiler. Energy 35:1107–1113

    Article  Google Scholar 

  • Shokri A, Hatami T, Khamforoush M (2011) Near critical carbon dioxide extraction of Anise (Pimpinella anisum L.) seed: mathematical and artificial neural network modeling. J Supercritical Fluids 58:49–57

    Article  Google Scholar 

  • Soriano LA, Yu W, Rubio JJ (2013) Modeling and control of wind turbine. Math Probl Eng 2013:1–13

    Article  Google Scholar 

  • Tang CY, Guo Y, Jiang JN (2011) Nonlinear dual-mode control of variable-speed wind turbines with doubly fed induction generators. IEEE Trans Control Syst Technol 19(4):744–756

    Article  Google Scholar 

  • Trawinski B (2013) Evolutionary fuzzy system ensemble approach to model real estate market based on data stream exploration. J Univ Comput Sci 19(4):539–562

    MathSciNet  Google Scholar 

  • Vepa R (2011) Nonlinear optimal control of a wind turbine generator. IEEE Trans Energy Convers 26(2):468–478

    Article  Google Scholar 

  • Wang LX (1997) A course in fuzzy systems and control. ISBN: 0-13-540882-2

  • Zertek A, Verbic G, Pantos M (2012) Optimised control approach for frequency-control contribution of variable speed wind turbines. IET Renew Power Gener 6(1):17–23

    Article  Google Scholar 

Download references

Acknowledgments

The author is grateful with the editor and with the reviewers for their valuable comments and insightful suggestions, which can help to improve this research significantly. The author thanks the Secretaría de Investigación y Posgrado, Comisión de Operación y Fomento de Actividades Académicas del IPN, and Consejo Nacional de Ciencia y Tecnología for their help in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José de Jesús Rubio.

Additional information

Communicated by E. Lughofer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Jesús Rubio, J. Analytic neural network model of a wind turbine. Soft Comput 19, 3455–3463 (2015). https://doi.org/10.1007/s00500-014-1290-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-014-1290-0

Keywords

Navigation