Skip to main content
Log in

Artificial bee colony algorithm for clustering: an extreme learning approach

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Extreme learning machine (ELM) as a new learning approach has shown its good generalization performance in regression and classification applications. Clustering analysis is an important tool to explore the structure of data and has been employed in many disciplines and applications. In this paper, we present a method that builds on ELM projection of input data into a high-dimensional feature space and followed by unsupervised clustering using artificial bee colony (ABC) algorithm. While ELM projection facilitates separability of clusters, a metaheuristic technique such as ABC algorithm overcomes problems of dependence on initialization of cluster centers and convergence to local minima suffered by conventional algorithms such as K-means. The proposed ELM-ABC algorithm is tested on 12 benchmark data sets. The experimental results show that the ELM-ABC algorithm can effectively improve the quality of clustering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. http://www.ics.uci.edu/~mlearn/MLRepository.html.

References

  • Alshamiri AK, Singh A, Surampudi BR (2014) A novel elm k-means algorithm for clustering. In: Proceedings of 5th joint international conference on swarm, evolutionary and memetic computing (SEMCCO 2014) and fuzzy and neural computing (FANCCO 2014), Odisha, India (To appear)

  • Camastra F, Verri A (2005) A novel kernel method for clustering. IEEE Trans Pattern Anal Mach Intell 27(5):801–805

    Article  Google Scholar 

  • Chaurasia SN, Singh A (2015) A hybrid swarm intelligence approach to the registration area planning problem. Inform Sci 302:50–69

    Article  Google Scholar 

  • Chitta R, Jin R, Havens TC, Jain AK (2011) Approximate kernel k-means: solution to large scale kernel clustering. In: Proceedings of 17th ACM SIGKDD international conference on knowledge discovery and data mining (KDD), New York, USA, pp 895–903

  • Falkenauer E (1998) Genetic algorithm and grouping problems. Wiley, New York

    MATH  Google Scholar 

  • Filippone M, Camastra F, Masulli F, Rovetta S (2008) A survey of kernel and spectral methods for clustering. Pattern Recognit 41:176–190

    Article  MATH  Google Scholar 

  • Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugen 7:179–188

    Article  Google Scholar 

  • Girolami M (2002) Mercer kernel based clustering in feature space. IEEE Trans Neural Netw 13(3):780–784

    Article  Google Scholar 

  • Han J, Kamber M (2001) Data mining: concepts and techniques. Academic Press, San Diego

  • He Q, Jin X, Du C, Zhuang F, Shi Z (2014) Clustering in extreme learning machine feature space. Neurocomputing 128:88–95

    Article  Google Scholar 

  • Huang G-B (2003) Learning capability and storage capacity of two-hidden-layer feedforward networks. IEEE Trans Neural Netw 14(2):274–281

    Article  Google Scholar 

  • Huang G-B, Zhu Q-Y, Siew C-K (2004) Extreme learning machine: a new learning scheme of feedforward neural networks. In: Proceedings of international joint conference on neural networks (IJCNN), vol 2. Budapest, Hungary, pp 985–990

  • Huang G-B, Chen L, Siew C-K (2006a) Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw 17(4):879–892

    Article  Google Scholar 

  • Huang G-B, Zhu Q-Y, Siew C-K (2006b) Extreme learning machine: theory and applications. Neurocomputing 70:489–501

    Article  Google Scholar 

  • Huang G-B, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern B Cybern 42(2):513–529

    Article  Google Scholar 

  • Jain AK (2010) Data clustering: 50 years beyond k-means. Pattern Recognit 31:651–666

    Article  Google Scholar 

  • Jain AK, Dubes RC (1989) Algorithms for clustering data. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv 31(3):264–323

    Article  Google Scholar 

  • Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. In: Technical report-TR06. Erciyes University, Engineering Faculty, Computer Engineering Department, Turkey

  • Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm. J Glob Optim 39(3):459–471

  • Karaboga D, Ozturk C (2010) A novel clustering approach: artificial bee colony (abc) algorithm. Appl Soft Comput 11:652–657

    Article  Google Scholar 

  • Krishna K, Murty MN (1999) Genetic k-means algorithm. IEEE Trans Syst Man Cybern B Cybern 29(3):433–439

    Article  Google Scholar 

  • Lan Y, Soh YC, Huang G-B (2010) Constructive hidden nodes selection of extreme learning machine for regression. Neurocomputing 73:3191–3199

    Article  Google Scholar 

  • Ng MK (2000) A note on constrained k-means algorithms. Pattern Recogn 33:515–519

    Article  Google Scholar 

  • Scholkopf B, Smola A, Muller K (1998) Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput 10(5):1299–1319

    Article  Google Scholar 

  • Selim SZ, Al-sultan K (1991) A simulated annealing algorithm for the clustering problems. Pattern Recogn 24(10):1003–1008

    Article  MathSciNet  Google Scholar 

  • Serre D (2002) Matrices: theory and applications. Springer, NewYork

    MATH  Google Scholar 

  • Shelokar P, Jayaraman V, Kulkarni B (2004) An ant colony approach for clustering. Analytica Chimica Acta 509:187–195

    Article  Google Scholar 

  • Sundar S, Singh A (2010) A swarm intelligence approach to the quadratic multiple knapsack problem. In: Proceedings of the 17th international conference on neural information processing (ICONIP 2010). Lecture notes in computer science, vol 6443, pp 626–633

  • Sundar S, Singh A (2014) Metaheuristic approaches for the blockmodel problem. IEEE Syst J. doi: 10.1109/JSYST.2014.2342931

  • Tzortzis GF, Likas AC (2009) The global kernel k-means algorithm for clustering in feature space. IEEE Trans Neural Netw 20(7):1181–1194

    Article  Google Scholar 

  • van der Merwe D, Engelhrecht A (2003) Data clustering using particle swarm optimization. In: Proceedings of IEEE congress on evolutionary computation (CEC 03). Canbella, Australia, pp 215–220

  • Venkatesh P, Singh A (2015) Two metaheuristic approaches for the multiple traveling salesperson problem. Appl Soft Comput 26:74–89

    Article  Google Scholar 

  • Xu R, Wunsch II D (2005) Survey of clustering algorithms. IEEE Trans Neural Netw 16(3):645–678

  • Yan X, Zhu Y, Zou W, Wang L (2012) A new approach for data clustering using hybrid artificial bee colony algorithm. Neurocomputing 97:241–250

    Article  Google Scholar 

  • Zhang L, Cao Q (2011) A novel ant-based clustering algorithm using the kernel method. Inform Sci 181:4658–4672

    Article  MathSciNet  Google Scholar 

  • Zhang R, Rudnicky AI (2002) A large scale clustering scheme for kernel k-means. In: Proceedings of 16th international conference on pattern recognition (ICPR), vol 4, Quebec, Canada, pp 289–292

  • Zhang C, Ouyang D, Ning J (2010) An artificial bee colony approach for clustering. Expert Syst Appl 37:4761–4767

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alok Singh.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alshamiri, A.K., Singh, A. & Surampudi, B.R. Artificial bee colony algorithm for clustering: an extreme learning approach. Soft Comput 20, 3163–3176 (2016). https://doi.org/10.1007/s00500-015-1686-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-015-1686-5

Keywords

Navigation