Skip to main content
Log in

Atomicity via regularity for non-additive set multifunctions

  • Foundations
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In this paper, an approach of atomicity problems is presented by means of regularity. Characterizations and physical interpretations of atoms and non-atomicity for set multifunctions taking values in the family of all nonempty subsets of a topological space are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agahi H, Mesiar R, Ouyang Y (2010) Further development of Chebyshev type inequalities for Sugeno integrals and T-(S-)evaluators. Kybernetika 46(1):83–95

    MATH  MathSciNet  Google Scholar 

  • Apreutesei G (2003) Families of subsets and the coincidence of hypertopologies. In: Annals of the Alexandru Ioan Cuza University—Mathematics, vol. XLIX, pp. 1–18

  • Banakh T, Novosad N (2013) Micro and macro fractals generated by multi-valued dynamical systems. arXiv:1304.7529v1 [math.GN]

  • Beer G (1993) Topologies on closed and closed convex sets. Kluwer Academic Publishers

  • Cavaliere P, Ventriglia F (2014) On nonatomicity for non-additive functions. J Math Anal Appl 415(1):358–372

    Article  MATH  MathSciNet  Google Scholar 

  • Chiţescu I (1975) Finitely purely atomic measures and \({\cal L^{p}}\)-spaces. An Univ Bucureşti Şt Nat 24:23–29

  • Chiţescu I (2001) Finitely purely atomic measures: coincidence and rigidity properties. Rend Circ Mat Palermo (2) 50(3):455–476

  • Croitoru A (2014) Convergences and topology via sequences of multifunctions. Inf Sci 282:250–260

    Article  MathSciNet  Google Scholar 

  • Dinculeanu N (1964) Measure theory and real functions (in Romanian). Ed. Did. şi Ped., Bucureşti

  • Gagolewski M, Mesiar R (2014) Monotone measures and universal integrals in a uniform framework for the scientific impact assessment problem. Inf Sci 263:166–174

    Article  MATH  MathSciNet  Google Scholar 

  • Gavriluţ A (2010) Non-atomicity and the Darboux property for fuzzy and non-fuzzy Borel/Baire multivalued set functions. Fuzzy Sets Syst 160(2009):1308–1317 (Erratum in. Fuzzy Sets and Systems 161:2612–2613)

  • Gavriluţ A, Croitoru A (2009) Non-atomicity for fuzzy and non-fuzzy multivalued set functions. Fuzzy Sets Syst 160(14):2106–2116

    Article  MATH  MathSciNet  Google Scholar 

  • Gavriluţ A (2011) Fuzzy Gould integrability on atoms. Iranian J Fuzzy Syst 8(3):113–124

    MATH  MathSciNet  Google Scholar 

  • Gavriluţ A, Croitoru A (2008) On the Darboux property in the multivalued case, annals of the University of Craiova. Math Comput Sci Ser 35:130–138

    MATH  Google Scholar 

  • Gavriluţ A, Croitoru A (2010) Pseudo-atoms and Darboux property for set multifunctions. Fuzzy Sets Syst 161(22):2897–2908

    Article  MATH  MathSciNet  Google Scholar 

  • Gavriluţ A, Agop M (2015) Approximation theorems for fuzzy set multifunctions in Vietoris topology. Physical implications of regularity (submitted for publication)

  • Gavriluţ AC (2010) A Lusin type theorem for regular monotone uniformly autocontinuous set multifunctions. Fuzzy Sets Syst 161(22):2909–2918

    Article  MATH  MathSciNet  Google Scholar 

  • Gavriluţ AC (2013) On the regularities of fuzzy set multifunctions with applications in variation, extensions and fuzzy set-valued integrability problems. Inf Sci 224:130–142

    Article  MATH  MathSciNet  Google Scholar 

  • Gavriluţ AC (2014) Remarks on monotone interval-valued set multifunctions. Inf Sci 259:225–230

    Article  MATH  MathSciNet  Google Scholar 

  • Gong Z, Wang L (2012) The Henstock Stieltjes integral for fuzzy-number-valued functions. Inf Sci 188:276–297

    Article  MATH  MathSciNet  Google Scholar 

  • Guo C, Zhang D (2004) On set-valued fuzzy measures. Inf Sci 160(14):13–25

    Article  MATH  MathSciNet  Google Scholar 

  • Hart S, Neyman A (1988) Values of non-atomic vector measure games: are they linear combinations of the measures? J Math Econ 17(1):31–40

    Article  MATH  MathSciNet  Google Scholar 

  • Hu S, Papageorgiou NS (1997) Handbook of multivalued analysis, vol I. Kluwer Acad. Publ, Dordrecht

    Book  MATH  Google Scholar 

  • Kawabe J (2007) Regularity and Lusin’s theorem for Riesz space-valued fuzzy measures. Fuzzy Sets Syst 158(8):895–903

    Article  MATH  MathSciNet  Google Scholar 

  • Karczmarek P, Pedrycz W, Reformat M, Akhoundi E (2014) A study in facial regions saliency: a fuzzy measure approach. Soft Comput Fusion Found Methodol Appl 18(2):379–391

    Google Scholar 

  • Khare M, Singh AK (2008) Atoms and Dobrakov submeasures in effect algebras. Fuzzy Sets Syst 159(9):1123–1128

    Article  MATH  MathSciNet  Google Scholar 

  • Klimkin VM, Svistula MG (2001) Darboux property of a non-additive set function. Mat Sb 192(7):41–50

    Article  MATH  MathSciNet  Google Scholar 

  • Ko H, Bae K, Choi J, Kim SH, Choi J (2015) Similarity recognition using context-based pattern for cyber-society. Soft Comput. doi:10.1007/s00500-015-1763-9

  • Kunze H, la Torre D, Mendivil F, Vrscay ER (2012) Fractal-based methods in analysis. Springer, New York

  • Li J, Mesiar R (2011) Lusin’s theorem on monotone measure spaces. Fuzzy Sets Syst 175:75–86

    Article  MATH  MathSciNet  Google Scholar 

  • Li J, Mesiar R, Pap E (2014) Atoms of weakly null-additive monotone measures and integrals. Inf Sci 134–139

  • Li J, Yasuda M, Song J (2005) Regularity properties of null-additive fuzzy measure on metric spaces. Lecture notes in artificial intelligence, vol 3558. Springer, Berlin Heidelberg, pp 59–66

  • Maghsoudi S (2013) Certain strict topologies on the space of regular Borel measures on locally compact groups. Topol Appl 160(14):1876–1888

    Article  MATH  MathSciNet  Google Scholar 

  • Marques I, Graña M (2012) Face recognition with lattice independent component analysis and extreme learning machines. Soft Comput Fusion Found Methodol Appl 16(9):1525–1537

    Google Scholar 

  • Mesiar R, Li J, Pap E (2015) Superdecomposition integral (submitted for publication)

  • Mesiar R, Li J, Pap E (2010) The Choquet integral as Lebesgue integral and related inequalities. Kybernetika 46(6):1098–1107

    MATH  MathSciNet  Google Scholar 

  • Olejček V (1974) Darboux property of regular measures. Mat Cas 24(3): 283–288

  • Olejček V (2012) Fractal construction of an atomic Archimedean effect algebra with non-atomic subalgebra of sharp elements. Kybernetika 48(2):294–298

    MATH  MathSciNet  Google Scholar 

  • Pap E (1990) Regular Borel t-decomposable measures. Univ. u Novom Sadu, Zb Rad Prirod Mat Fak Ser Mat 20(2):113–120

  • Pap E (1994) The range of null-additive fuzzy and non-fuzzy measures. Fuzzy Sets Syst 65(1):105–115

    Article  MATH  MathSciNet  Google Scholar 

  • Pap E (1995) Null-additive set functions. Springer, New York, p 337 (Series: Mathematics and Its Applications)

  • Pap E (2002) Some elements of the classical measure theory, pp 27–82 (Chapter 2 in Handbook of Measure Theory)

  • Pap E, Strboja M, Rudas I (2014) Pseudo-Lp space and convergence. Fuzzy Sets Syst 238:113–128

    Article  MATH  MathSciNet  Google Scholar 

  • Rao KPSB, Rao MB (1983) Theory of charges. Academic Press Inc, New York

    MATH  Google Scholar 

  • Suzuki H (1991) Atoms of fuzzy measures and fuzzy integrals. Fuzzy Sets Syst 41:329–342

    Article  MATH  MathSciNet  Google Scholar 

  • Watanabe T, Kawasaki T, Tanaka T (2012) On a sufficient condition of Lusin’s theorem for non-additive measures that take values in an ordered topological vector space. Fuzzy Sets Syst 194:66–75

    Article  MATH  MathSciNet  Google Scholar 

  • Wicks KR (1991) Fractals and hyperspaces. Springer, Berlin Heidelberg

    Book  MATH  Google Scholar 

  • Wu C, Bo S (2007) Pseudo-atoms of fuzzy and non-fuzzy measures. Fuzzy Sets Syst 158:1258–1272

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research was supported for the first author by the Grant MNPRS 174009 and by the project “Mathematical models of intelligent systems and their applications” which was supported by the Provincial Secretariat for Science and Technological Development of Vojvodina.The authors are indebted to the Area Editor and the unknown referees for their valuable remarks in the improving of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alina Gavriluţ.

Ethics declarations

Conflict of interest

The authors declare no (financial or non-financial) potential conflicts of interest. This article does not contain any studies with human participants or animals performed by any of the authors. The manuscript has not been submitted to more than one journal for simultaneous consideration. The manuscript has not been published previously (partly or in full).

Additional information

Communicated by A. Di Nola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pap, E., Gavriluţ, A. & Agop, M. Atomicity via regularity for non-additive set multifunctions. Soft Comput 20, 4761–4766 (2016). https://doi.org/10.1007/s00500-015-2021-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-015-2021-x

Keywords

Navigation