Skip to main content
Log in

Effective fuzzy possibilistic c-means: an analyzing cancer medical database

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Using clustering analysis for identifying cancer types in high-dimensional microarray gene expression cancer database is extremely difficult task because of high-dimensionality gene with noise. Most of the existing clustering methods for microarray gene expression cancer database to achieve types of cancers often hamper the interpretability of the structure. Hence, this paper presents effective fuzzy c-means by incorporating the membership function of fuzzy c-means, the typicality of possibilistic c-means approaches, normed kernel-induced distance, to find cancer subtypes in the microarray gene expression cancer database. This paper successfully finds the subtypes of cancers in microarray gene expression cancer database using the proposed method. The superiority of the proposed method has been proved through clustering accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alon U (1999) Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci USA 96(12):6745–6750

    Article  Google Scholar 

  • Bezdek JC (1981) Pattern recognition with Fuzzy objective function algorithms. Plenum Press, New York

    Book  MATH  Google Scholar 

  • Chen H-L, Yang B, Liu J, Liu D-Y (2011) A support vector machine classifier with rough set-based feature selection for breast cancer diagnosis. Expert Syst Appl 38:9014–9022

    Article  Google Scholar 

  • Coppi R et al (2012) Fuzzy and possibilistic clustering for fuzzy data. Comput Stat Data Anal 56(4):915–927

    Article  MathSciNet  MATH  Google Scholar 

  • De Bin R et al (2011) A novel approach to the clustering of microarray data via nonparametric density estimation. BMC Bioinform 12(1):49–56

    Article  Google Scholar 

  • Hartigan JA (1975) Clustering algorithms. Wiley, New York

    MATH  Google Scholar 

  • Hawes SE et al (2010) DNA hypermethylation of tumors from non-small cell lung cancer (NSCLC) patients is associated with gender and histologic type. Lung Cancer 69:172–179

    Article  Google Scholar 

  • He Z, Xu X, Deng S (2005) A cluster ensemble method for clustering categorical data. Inf Fusion 6(2):143–151

    Article  Google Scholar 

  • Kanzawa Y, Endo Y, Miyamoto S (2008) Fuzzy classification function of entropy regularized fuzzy c-means algorithm for data with tolerance using kernel function. In: The 2008 IEEE International Conference on Granular Computing, pp 350–355

  • Kashef R et al (2010) Cooperative clustering. Pattern Recognit 43:2315–2329

    Article  MATH  Google Scholar 

  • Kumar S et al (2012) Development of an efficient clustering technique for colon dataset. Int J Eng Innov Technol 1(5):83–86

    Google Scholar 

  • Mclachlan GJ et al (2002) A mixture model based approach to the clustering of micro-array expression data. Bio Inform 18(3):413–422

    Google Scholar 

  • Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics. CA Cancer J Clin 55(2):74–108

    Article  Google Scholar 

  • Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65

    Article  MATH  Google Scholar 

  • Thomas R, Thieffry D, Kaufman M (1995) Dynamical behaviour of biological regulatory networks—I. Bull Math Biol 57:247–276 17

    Article  Google Scholar 

  • Tjhi W-C, Chen L (2007) Possibilistic fuzzy co-clustering of large document collections. Pattern Recognit 40(12):3452–3466

    Article  MATH  Google Scholar 

  • Turm H et al (2014) Comprehensive analysis of transcription dynamics from brain samples following behavioral experience. J Vis Exp 90:e51642–e51642. doi:10.3791/51642

    Google Scholar 

  • Vanisri D et al (2011) An efficient fuzzy possibilistic C-means with penalized and compensated constraints. Global J Comput Sci Technol 11(3):15–21

    Google Scholar 

  • Yu Z, Wong HS, Wang H (2007) Graph based consensus clustering for class discovery from gene expression data. Bioinformatics 23(21):2888–2896

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Indo Taiwan Joint Research Project, DST India & NSC Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Kannan.

Ethics declarations

Conflict of interest

None.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by C.-H. Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kannan, S.R., Devi, R., Ramathilagam, S. et al. Effective fuzzy possibilistic c-means: an analyzing cancer medical database. Soft Comput 21, 2835–2845 (2017). https://doi.org/10.1007/s00500-016-2198-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-016-2198-7

Keywords

Navigation