Skip to main content
Log in

Group object detection and tracking by combining RPCA and fractal analysis

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Automatic video analysis is a hot research topic in the field of computer vision and has broad application prospects. It usually consists of three key steps: object detection, object tracking and behavior recognition. Usually, object detection is just considered as the precondition of object tracking, and the correlation between them is very little. So, existing video analysis solutions treat them as independent procedures and execute them separately. Actually, object detection and tracking are related and the effective combination of them can improve the performance of video analysis. This paper mainly studies object detection and tracking, and tries to utilize the outputs of them to optimize their performance by each other. For this purpose, a unified algorithm framework called group object detection and tracking is presented, which detects moving objects by robust principle component analysis (RPCA) and Graph Cut algorithm and tracks objects via fractal analysis simultaneously. The multi-fractal spectrum (MFS) constrain and Graph Cut improve the complement of object detection, which will bring more exact tracking feature. At the same time, the successful results from tracking can provide optimal constrain for object detection in an opposite manner. Therefore, object detection and tracking are grouped and can be improved by an iterative RPCA algorithm. The experimental results of simulation and real sequence demonstrate that the proposed algorithm is more robust and outperforms state-of-art algorithms in object detection and tracking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alper Y, Omar J, Mubarak S (2006) Object tracking: a survey. ACM Comput Surv 38(4):1–35

    Google Scholar 

  • Amiaz T, Kiryati N (2006) Piecewise-smooth dense optical flow via level sets. Int J Comput Vis 68(2):111–124

    Article  Google Scholar 

  • Avidan S (2004) Support vector tracking. IEEE Trans Pattern Anal Mach Intell 26(8):1064–1072

    Article  Google Scholar 

  • Bai X, Wang J, Simons D, Sapiro G (2009) Video snapcut: robust video object cutout using localized classifiers. ACM Transactions on Graphics (TOG) 28(3):70

    Article  Google Scholar 

  • Barnich O, Van Droogenbroeck M (2011) Vibe: a universal background subtraction algorithm for video sequences. IEEE Trans Image Process 20(6):1709–1724

    Article  MathSciNet  MATH  Google Scholar 

  • Bertalmio M, Sapiro G, Randall G (2000) Morphing active contours. IEEE Trans Pattern Anal Mach Intell 22(7):733–737

    Article  Google Scholar 

  • Black MJ, Anandan P (1996) The robust estimation of multiple motions: parametric and piecewise-smooth flow fields. Comput Vis Image Underst 63(1):75–104

    Article  Google Scholar 

  • Bouwmans T (2014) Traditional and recent approaches in background modeling for foreground detection: an overview. Comput Sci Rev 11:31–66

    Article  MATH  Google Scholar 

  • Boykov Y, Veksler O, Zabih R (2001) Fast approximate energy minimization via graph cuts. IEEE Trans Pattern Anal Mach Intell 23(11):1222–1239

    Article  Google Scholar 

  • Broida TJ, Chellappa R (1986) Estimation of object motion parameters from noisy images. IEEE Trans Pattern Anal Mach Intell 1:90–99

    Article  Google Scholar 

  • Brox T, Malik J, (2010) Object segmentation by long term analysis of point trajectories. In: Computer vision-ECCV 2010. Springer, Berlin, pp 282–295

  • Brox T, Bruhn AES, Weickert J, (2006) Variational motion segmentation with level sets. In: Computer vision-ECCV 2006. Springer, Berlin, pp 471–483

  • Brutzer S, Hoferlin B, Heidemann G (2011) Evaluation of background subtraction techniques for video surveillance

  • Cand ES, Emmanuel J, Li X, Ma Y, Wright J (2011) Robust principal component analysis? J ACM (JACM) 58(3):11

    MathSciNet  MATH  Google Scholar 

  • Chan AB, Vasconcelos N (2009) Layered dynamic textures. IEEE Trans Pattern Anal Mach Intell 31(10):1862–1879

    Article  Google Scholar 

  • Chen B, Shu H, Coatrieux G, Chen G, Sun X, Coatrieux JL (2015) Color image analysis by quaternion-type moments. J Math Imaging Vis 51(1):124–144

    Article  MathSciNet  MATH  Google Scholar 

  • Comaniciu D, Meer P (1999) Mean shift analysis and applications

  • Fazekas SA, Amiaz T, Chetverikov D, Kiryati N (2009) Dynamic texture detection based on motion analysis. Int J Comput Vis 82(1):48–63

    Article  Google Scholar 

  • Fortun D, Bouthemy P, Kervrann C (2015) Optical flow modeling and computation: a survey. Comput Vis Image Underst 134:1–21

    Article  MATH  Google Scholar 

  • Gauglitz S, Llerer THO, Turk M (2011) Evaluation of interest point detectors and feature descriptors for visual tracking. Int J Comput Vis 94(3):335–360

    Article  MATH  Google Scholar 

  • Han B, Comaniciu D, Zhu Y, Davis LS (2008) Background subtraction techniques: a review. IEEE Trans Pattern Anal Mach Intell 30(7):1186–1197

    Article  Google Scholar 

  • Kang J, Cohen I, Medioni G (2004) Object reacquisition using invariant appearance model

  • Kim K, Chalidabhongse TH, Harwood D, Davis L (2005) Real-time foreground-background segmentation using codebook model. Real-time Imaging 11(3):172–185

    Article  Google Scholar 

  • Li L, Huang W, Gu IYH, Tian Q (2004) Statistical modeling of complex backgrounds for foreground object detection. IEEE Trans Image Process 13(11):1459–1472

    Article  Google Scholar 

  • Li J, Li X, Yang B, Sun X (2015) Segmentation-based image copy-move forgery detection scheme. IEEE Trans Inf Forensics Secur 10(3):507–518

    Article  Google Scholar 

  • Lin L, Lin W, Xiao W, Huang S (2015) An optimized video synopsis algorithm and its distributed processing model. Soft Comput 1–13

  • Mikolajczyk K, Schmid C (2004) Scale and affine invariant interest point detectors. Int J Comput Vis 60(1):63–86

    Article  Google Scholar 

  • Mittal A, Paragios N (2004) Motion-based background subtraction using adaptive kernel density estimation

  • Ochs P, Brox T (2011) Object segmentation in video: a hierarchical variational approach for turning point trajectories into dense regions

  • Ochs P, Malik J, Brox T (2014) Segmentation of moving objects by long term video analysis. IEEE Trans Pattern Anal Mach Intell 36(6):1187–1200

    Article  Google Scholar 

  • Oliver NM, Rosario B, Pentland AP (2000) A bayesian computer vision system for modeling human interactions. IEEE Trans Pattern Anal Mach Intell 22(8):831–843

    Article  Google Scholar 

  • Pan Z, Zhang Y, Kwong S (2015) Efficient motion and disparity estimation optimization for low complexity multiview video coding. IEEE Trans Broadcast 61(2):166–176

    Article  Google Scholar 

  • Paskaš MP, Reljin BD, Reljin IS (2016) Revision of multifractal descriptors for texture classification based on mathematical morphology. Pattern Recogn Lett

  • Rittscher J, Kato J, Joga SEB, Blake A, (2000) A probabilistic background model for tracking. In: Computer visionECCV 2000. Springer, Berlin, pp 336–350

  • Rother C, Kolmogorov V, Blake A (2004) Grabcut: interactive foreground extraction using iterated graph cuts. ACM Trans Graph (TOG) 23(3):309–314

    Article  Google Scholar 

  • Sato K, Aggarwal JK (2004) Temporal spatio-velocity transform and its application to tracking and interaction. Comput Vis Image Underst 96(2):100–128

    Article  Google Scholar 

  • Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905

    Article  Google Scholar 

  • Sobral A, Vacavant A (2014) A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos. Comput Vis Image Underst 122:4–21

    Article  Google Scholar 

  • Stauffer C, Grimson WEL (1999) Adaptive background mixture models for real-time tracking

  • Tao H, Sawhney HS, Kumar R (2002) Object tracking with bayesian estimation of dynamic layer representations. IEEE Trans Pattern Anal Mach Intell 24(1):75–89

    Article  Google Scholar 

  • Veenman CJ, Reinders MJT, Backer E (2001) Resolving motion correspondence for densely moving points. IEEE Trans Pattern Anal Mach Intell 23(1):54–72

    Article  Google Scholar 

  • Wang H, Suter D, (2006) A novel robust statistical method for background initialization and visual surveillance. In: Computer vision-ACCV 2006. Springer, Berlin, pp 328–337

  • Xia Z, Wang X, Sun X, Liu Q, Xiong N (2016) Steganalysis of lsb matching using differences between nonadjacent pixels. Multimed Tools Appl 75(4):1947–1962

    Article  Google Scholar 

  • Xiaowei Z, Can Y, Weichuan Y (2013) Moving object detection by detecting contiguous outliers in the low-rank representation. IEEE Trans Pattern Anal Mach Intell 35(3):597–610

    Article  Google Scholar 

  • Xu Y, Huang S-B, Ji H, Fermuller C (2009a) Combining powerful local and global statistics for texture description

  • Xu Y, Huang S, Ji H (2009b) Integrating local feature and global statistics for texture analysis

  • Xu Y, Ji H, Fermür C (2009c) Viewpoint invariant texture description using fractal analysis. Int J Comput Vis 83(1):85–100

    Article  Google Scholar 

  • Yong X, Quan Y, Zhang Z, Ling H, Ji H (2015) Classifying dynamic textures via spatiotemporal fractal analysis. Pattern Recogn 48(10):3239–3248

    Article  Google Scholar 

  • Yan J, Pollefeys M, (2006) A general framework for motion segmentation: independent, articulated, rigid, non-rigid, degenerate and non-degenerate. In: Computer vision-ECCV 2006. Springer, Berlin, pp 94–106

  • Yitzhaky Y, Peli E (2003) A method for objective edge detection evaluation and detector parameter selection. IEEE Trans Pattern Anal Mach Intell 25(8):1027–1033

    Article  Google Scholar 

  • Zeković A, Reljin I (2013) Multifractal and inverse multifractal analysis of multiview 3d video. In: Telecommunications forum (TELFOR), 2013 21st. IEEE, pp 753–756

  • Zheng Y, Jeon B, Danhua X, Wu QM, Zhang H (2015) Image segmentation by generalized hierarchical fuzzy c-means algorithm. J Intell Fuzzy Syst 28(2):961–973

    Google Scholar 

Download references

Acknowledgments

We want to thank the helpful comments and suggestions from the anonymous reviewers. This work is partially supported by the National Natural Science Foundation of China (Grant Nos. 61501207 and 61402183), Guangdong Natural Science Foundation (Grant Nos. S2012030006242 and S2013040012449), Guangdong Provincial Scientific and Technological Projects (Grant Nos. 2013B090500030, 2016A010119171, 2016A010101018, 2016A010101007, and 2016B090918021), Guangzhou Scientific and Technological Projects (Grant Nos. 2013Y2-00065, 2013J4300056, 2014Y2-00133, 201601010314, 201607010048 and 201604010040).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Longxin Lin or Weiwei Lin.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, L., Lin, W. & Huang, S. Group object detection and tracking by combining RPCA and fractal analysis. Soft Comput 22, 231–242 (2018). https://doi.org/10.1007/s00500-016-2329-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-016-2329-1

Keywords

Navigation