Skip to main content
Log in

Multichannel image denoising using color monogenic curvelet transform

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Color monogenic curvelet transform (CMCT) is a new multi-scale analysis tool for geometric image features. CMCT has useful properties that it behaves at the fine scales like curvelet transform and at the coarse scales like the color monogenic wavelet transform. CMCT has one magnitude and three phases which encode geometric information of color images. In order to demonstrate the properties of CMCT, new color image denoising algorithm is proposed based on CMCT and total variation. The experimental results demonstrate that the proposed algorithm is at par with or exceeds current state-of-the-art algorithms in both visual and quantitative performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alessandrini M, Bernard O, Basarab A, Liebott H (2013) Multiscale optical flow computation from the monogenic signal. IRBM 34(1):33–37

    Article  Google Scholar 

  • Amiot C, Girard C, Chanussot J, Pescatore J, Desvignes M (2015) Curvelet based contrast enhancement in fluoroscopic sequences. IEEE Trans Med Imaging 34(1):137–147

    Article  Google Scholar 

  • Candes EJ, Donoho DL (2005) Continuous curvelet transform: I. Resolution of the wavefront set. Appl Comput Harmonic Anal 19(8):162–197

    Article  MathSciNet  MATH  Google Scholar 

  • Candes EJ, Donoho DL (2005) Continuous curvelet transform: II. Discretization and frames. Appl Comput Harmonic Anal 19(2):198–222

    Article  MathSciNet  MATH  Google Scholar 

  • Cunha AL, Zhou JP, Do MN (2006) The Nonsubsampled contourlet transform: theory, design, and applications. IEEE Trans Image Process 15(10):3089–3101

    Article  Google Scholar 

  • Demarcq G, Mascarilla L, Berthier M, Courtellemont P (2011) The color monogenic signal: application to color edge detection and color optical flow. Math Imag Vis 40(3):269–284

    Article  MathSciNet  MATH  Google Scholar 

  • Dong GG, Wang N, Kuang GY (2014) Sparse representation of monogenic signal: with application to target recognition in sar images. IEEE Signal Process Lett 21(8):952–956

    Article  Google Scholar 

  • Do MN, Vetterli M (2006) The contourlet transform:an efficient directional multiresolution image representation. IEEE Trans Image Process 14(12):2091–2106

    Article  Google Scholar 

  • Easleya G, Labate D, Lim WQ (2008) Sparse directional image representations using the discrete shearlet transform. Appl Comput Harmonic Anal 25(1):25–46

    Article  MathSciNet  MATH  Google Scholar 

  • Held S, Storath M, Massopust P, Forster B (2010) Steerable wavelet frames based on the riesz transform. IEEE Trans Image Process 19(3):653–667

    Article  MathSciNet  MATH  Google Scholar 

  • Holt KM (2014) Total nuclear variation and jacobian extensions of total variation for vector fields. IEEE Trans Image Process 23(9):3975–3989

    Article  MathSciNet  MATH  Google Scholar 

  • Hughes JM, Rockmore DN, Yang W (2013) Bayesian learning of sparse multiscale image representations. IEEE Trans Image Process 22(12):4972–4983

    Article  MathSciNet  MATH  Google Scholar 

  • Kim S (2006) PDE-based image restoration: a hybrid model and color image denoising. IEEE Trans Image Process 15(5):1163–1170

    Article  Google Scholar 

  • Kim SJ, Kang W, Lee E, Paik J (2010) Wavelet-domain color image enhancement using filtered directional bases and frequency-adaptive shrinkage. IEEE Trans Consum Electron 56(2):1063–1070

    Article  Google Scholar 

  • Lian NX, Zagorodnov V, Tan YP (2005) Color image denoising using wavelets and minimum cut analysis. Signal Process Lett 12(11):741–744

    Article  Google Scholar 

  • Lim BR, Lee HS, Park RH, Yang SJ (2009) A wavelet packet-based noise reduction algorithm of NTSC images using CVBS characteristics. IEEE Trans Consum Electron 55(4):2407–2415

    Article  Google Scholar 

  • Lim WQ (2010) The discrete shearlet transform: a new directional transform and compactly supported shearlet frames. IEEE Trans Image Process 19(5):1166–1180

    Article  MathSciNet  MATH  Google Scholar 

  • Luisier F, Blu T (2008) SURE-LET multichannel image denoising: interscale orthonormal wavelet thresholding. IEEE Trans Image Process 17(4):482–492

    Article  MathSciNet  Google Scholar 

  • Olhede SC, Ramirez D, Schreier PJ (2014) Detecting directionality in random fields using the monogenic signal. IEEE Trans Inf Theory 60(10):6491–6510

    Article  MathSciNet  MATH  Google Scholar 

  • Pennec EL, Mallat S (2005) Sparse geometric image representations with bandelets. IEEE Trans Image Process 14(4):423–438

    Article  MathSciNet  Google Scholar 

  • Pizurica A, Philips W (2006) Estimating the probability of the presence of a signal of interest in multiresolution single and multiband image denoising. IEEE Trans Image Process 15(3):654–665

    Article  Google Scholar 

  • Selesnick IW, Baraniuk RG, Kingsbury N (2005) The dual-tree complex wavelet transform-A coherent framework for multiscale signal and image processing. IEEE Trans Signal Process 22(6):123–151

    Article  Google Scholar 

  • Soulard R, Carre P, Maloigne CF (2013) Vector extension of monogenic wavelets for geometric representation of color images. IEEE Trans Image Process 22(3):1070–1083

    Article  MathSciNet  MATH  Google Scholar 

  • Veilsavljevic V, Beferull-Lozano B, Vetterli M, Dragotti PL (2006) Directionlets: anisotropic multidirectional representation with separable filtering. IEEE Trans Image Process 15(7):1916–1933

    Article  Google Scholar 

  • Wen YW, Ng MK, Huang YM (2008) Efficient total variation minimization methods for color image restoration. IEEE Trans Image Process 17(11):2081–2088

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang DG (2012) A new approach and system for attentive mobile learning based on seamless migration. Appl Intell 36(1):75–89

    Article  Google Scholar 

  • Zhang DG, Kang XJ (2012a) A novel image denoising method based on spherical coordinates system. EURASIP J Adv Signal Process 110:1–10

  • Zhang DG, Zhang XD (2012b) Design and implementation of embedded un-interruptible power supply system (EUPSS) for web-based mobile application. Enterp Inform Syst 6(4):473–489

    Article  Google Scholar 

  • Zhang DG, Zhu YN (2012c) A new constructing approach for a weighted topology of wireless sensor networks based on local-world theory for the Internet of Things (IOT). Comput Math Appl 64(5):1044–1055

    Article  MATH  Google Scholar 

  • Zhang L, Zhang D, Guo ZH (2010) Monogenic-LBP: A new approach for rotation invariant texture classification. IEEE international conference on image processing, pp 2677–2680

  • Zhang DG, Li G, Zheng K (2014a) An energy-balanced routing method based on forward-aware factor for Wireless Sensor Network. IEEE Trans Ind Inf 10(1):766–773

    Article  Google Scholar 

  • Zhang DG, Wang X, Song XD (2014b) A novel approach to mapped correlation of ID for RFID anti-collision. IEEE Trans Serv Comput 7(4):741–748

    Article  Google Scholar 

  • Zhang DG, Song XD, Wang X (2015a) New agent-based proactive migration method and system for big data environment (BDE). Eng Comput 32(8):2443–2466

    Article  Google Scholar 

  • Zhang DG, Wang X, Song XD (2015b) New medical image fusion approach with coding based on SCD in wireless sensor network. J Elect Eng Technol 10(6):2384–2392

    Article  Google Scholar 

  • Zhang DG, Zheng K, Zhang T (2015c) A novel multicast routing method with minimum transmission for WSN of cloud computing service. Soft Comput 19(7):1817–1827

    Article  Google Scholar 

  • Zhang DG, Liang YP (2013) A kind of novel method of service-aware computing for uncertain mobile applications. Math Comput Model 57(3–4):344–356

    Article  Google Scholar 

Download references

Acknowledgments

This work is partially supported by National Natural Science Foundation of China under Grant No. (61563037); Natural Science Foundation of Jiangxi Province under Grant No. (20151BAB207031); Department of Education Science and Technology of Jiangxi Province under Grant No. (GJJ150755).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan Gai.

Ethics declarations

Conflict of interest

The author Shan Gai in this paper declares no conflict of interest.

Additional information

Communicated by V. Loia.

Appendix

Appendix

1.1 Proof of Theorem 1

Let \(f\in L^{2}\left( {\mathfrak {R}^{3},\mathfrak {R}} \right) \), \(M\lambda _{\mu \nu \theta } \left( x \right) =M\lambda _{\mu \nu \theta } \left( {x-\nu } \right) \), and \(\hat{{M}}\) denote the reflection of M, then we have to show

$$\begin{aligned} Mf\left( x \right)= & {} {M\lambda _{\mu 0\theta } {*}M\lambda _{\mu 0\theta } {*}f\left( x \right) \mathrm{d}\theta \mathrm{d}\mu }\Big /{\mu ^{3}} \\= & {} {M\lambda _{\mu 0\theta } {*}\overline{\hat{{M}}\lambda _{\mu 0\theta }} {*}f\left( x \right) \mathrm{d}\theta \mathrm{d}\mu }\Big /{\mu ^{3}} \\= & {} \frac{\int {M\lambda _{\mu 0\theta } \left( {x-\nu } \right) \left( \overline{\hat{{M}}\lambda _{\mu 0\theta }}{*}f \right) } \left( x \right) \mathrm{d}\nu \mathrm{d}\theta \mathrm{d}\mu }{\mu ^{3}} \\= & {} \frac{\int {M\lambda _{\mu 0\theta } \left( {x-\nu } \right) \left( \overline{M\lambda _{\mu 0\theta } (x-\nu )}{*}f \right) } \left( x \right) \mathrm{d}\nu \mathrm{d}\theta d\mu }{\mu ^{3}} \\= & {} \int {{\left\langle {M\lambda _{\mu \nu \theta } ,f} \right\rangle M\lambda _{\mu \nu \theta } (x)\mathrm{d}\nu \mathrm{d}\theta \mathrm{d}\mu }\Big /{\mu ^{3}}} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gai, S. Multichannel image denoising using color monogenic curvelet transform. Soft Comput 22, 635–644 (2018). https://doi.org/10.1007/s00500-016-2361-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-016-2361-1

Keywords

Navigation