Skip to main content
Log in

Optimal solution to orbital three-player defense problems using impulsive transfer

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

This paper investigates three-dimensional orbital three-spacecraft-player defense problems. An attacker is about to strike a non-maneuverable asset, while a defender attempts to prevent this attacking in order to protect the asset. It is assumed that both the attacker and the defender have only one chance to maneuver using impulsive thrust. The attacker is not aware of the defender’s participation, while the latter has full information about the former. A hybrid method combined particle swarm optimization with a Newton-Interpolation algorithm is proposed to solve presented orbital defense problems. Numerical results show that the proposed methodology can solve orbital three-player defense problems effectively. Energy consumption of defender is analyzed in detail to tell whether the specified upper bound of defender’s energy is justified. The interesting discovery is the valid departure window of defender in lurk orbit which have important significance for design defender’s strategy in orbital three-player defense problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abdelkhalik O, Gad A (2012) Dynamic-size multiple populations genetic algorithm for multigravity-assist trajectory optimization. J Guid Control Dyn 35(2):520–529. doi:10.2514/1.54330

    Article  Google Scholar 

  • Anderson GM, Grazier VW (1976) Barrier in pursuit-evasion problems between two low-thrust orbital spacecraft. AIAA J 14(2):158–163. doi:10.2514/3.61350

    Article  MathSciNet  Google Scholar 

  • Bai Q (2010) Analysis of particle swarm optimization algorithm. Comput Inf Sci 3(1):180–184. doi:10.5539/cis.v3n1p180

    Google Scholar 

  • Battin RH (1999) An introduction to the mathematics and methods of astrodynamics. AIAA Education Series, Reston

    MATH  Google Scholar 

  • Blasch EP, Pham K, Shen D (2012) Orbital satellite pursuit-evasion game-theoretical control. In: Information science, signal processing and their applications (ISSPA), 2012 11th international conference on, IEEE, pp 1007–1012

  • Boyell RL (1976) Defending a moving target against missile or torpedo attack. IEEE Trans Aerosp Electron Syst AES–12(4):522–526. doi:10.1109/TAES.1976.308338

    Article  Google Scholar 

  • Burk RC, Widhalm JW (1989) Minimum impulse orbital evasive maneuvers. J Guid Control Dyn 12(1):121–123. doi:10.2514/3.20378

    Article  Google Scholar 

  • Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the 6th international symposium on micro machine and human science, Nagoya, pp 39–43

  • Gandomi AH, Yun GJ, Yang X-S, Talatahari S (2013) Chaos-enhanced accelerated particle swarm optimization. Commun Nonlinear Sci Numer Simul 18(2):327–340. doi:10.1016/j.cnsns.2012.07.017

    Article  MathSciNet  MATH  Google Scholar 

  • Goel T, Stander N (2009) Adaptive simulated annealing for global optimization in ls-opt. In: Proceedings of the 7th European LS-DYNA conference, LSTC, California, pp 1–8

  • Hafer WT, Reed HL (2015) Orbital pursuit-evasion hybrid spacecraft controllers. In: AIAA guidance, navigation, and control conference, Kissimmee, Florida, AIAA Paper 2015–2000. doi:10.2514/6.2015-2000

  • Hu X, Shi Y, Eberhart RC (2004) Recent advances in particle swarm. In: Proceedings of IEEE congress on evolutionary computation, vol 1, pp 90–97

  • Isaacs R (1965) Differential games. Wiley, New York

    MATH  Google Scholar 

  • Islam SM, Das S, Ghosh S, Roy S, Suganthan PN (2012) An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization. IEEE Trans Syst Man Cybern Part B Cybern 42(2):482–500. doi:10.1109/TSMCB.2011.2167966

    Article  Google Scholar 

  • Leeghim H (2013) Spacecraft intercept using minimum control energy and wait time. Celest Mech Dyn Astron 115(1):1–19. doi:10.1007/s10569-012-9448-5

    Article  MathSciNet  MATH  Google Scholar 

  • Li D, Cruz JB (2011) Defending an asset: a linear quadratic game approach. IEEE Trans Aerosp Electron Syst 47(2):1026–1044. doi:10.1109/TAES.2011.5751240

    Article  Google Scholar 

  • Liu Y, Li R, Wang S (2016a) Orbital three-player differential game using semi-direct collocation with nonlinear programming. In: 2016 2nd international conference on control science and systems engineering (ICCSSE), pp 217–222. doi:10.1109/CCSSE.2016.7784385

  • Liu Y, Li R, Wang S (2016b) Particle swarm optimization applied to orbital three-player conflict. In: 2016 8th international conference on intelligent human-machine systems and cybernetics (IHMSC), vol 02, pp 513–517. doi:10.1109/IHMSC.2016.171

  • Liu Y, Li R, Wang S (2017) Optimal anti-interception orbit design based on genetic algorithm. Int J Comput Sci Eng (in press)

  • Menon PKA, Calise AJ, Leung SKM (1988) Guidance laws for spacecraft pursuit-evasion and rendezvous. In: AIAA guidance navigation and control conference, Minneapolis, pp 688–697

  • Mohan BC, Baskaran R (2012) A survey: ant colony optimization based recent research and implementation on several engineering domain. Expert Syst Appl 39(4):4618–4627. doi:10.1016/j.eswa.2011.09.076

    Article  Google Scholar 

  • Morgan JA (2011) Interception in differential pursuit/evasion games. arXiv preprint arXiv:1109.4059

  • Perelman A, Shima T, Rusnak I (2011) Cooperative differential games strategies for active aircraft protection from a homing missile. J Guid Control Dyn 34(3):761–773. doi:10.2514/1.51611

  • Pontani M, Conway BA (2009) Numerical solution of the three-dimensional orbital pursuit-evasion game. J Guid Control Dyn 32(2):474–487. doi:10.2514/1.37962

    Article  Google Scholar 

  • Pontani M, Conway BA (2012) Particle swarm optimization applied to impulsive orbital transfers. Acta Astronaut 74:141–155. doi:10.1016/j.actaastro.2011.09.007

    Article  Google Scholar 

  • Pontani M, Ghosh P, Conway BA (2012) Particle swarm optimization of multiple-burn rendezvous trajectories. J Guid Control Dyn 35(4):1192–1207. doi:10.2514/1.55592

    Article  Google Scholar 

  • Prussing JE, Clifton RS (1994) Optimal multiple-impulse satellite evasive maneuvers. J Guid Control Dyn 17(3):599–606. doi:10.2514/3.21239

    Article  MATH  Google Scholar 

  • Rahimi A, Kumar KD, Alighanbari H (2013) Particle swarm optimization applied to spacecraft reentry trajectory. J Guid Control Dyn 36(1):307–310. doi:10.2514/1.56387

    Article  Google Scholar 

  • Rusnak I (2008) Guidance laws in defense against missile attack. In: IEEE 25th convention of electrical and electronics engineers in Israel, pp 90–94. doi:10.1109/EEEI.2008.4736664

  • Shen D, Pham K, Blasch E, Chen H, Chen G (2011) Pursuit-evasion orbital game for satellite interception and collision avoidance. In: Proceedings of SPIE, vol 8044. doi:10.1117/12.882903

  • Shi Y, Eberhart R (1998) A modified particle swarm optimizer. In: IEEE International Conference on Evolutionary Computation, Anchorage, Alaska, pp 69–73. doi:10.1109/ICEC.1998.699146

  • Shneydor NA (1977) Comments on ”defending a moving target against missile or topedo attack”. IEEE Trans Aerosp Electron Syst AES–13(3):321. doi:10.1109/TAES.1977.308401

    Article  MathSciNet  Google Scholar 

  • Showalter DJ, Black JT (2014) Responsive theater maneuvers via particle swarm optimization. J Spacecr Rockets 51(6):1976–1985. doi:10.2514/1.A32989

    Article  Google Scholar 

  • Stratemeier D (2002) Optimum two-impulse orbital transfer solved using evolutionary programming. In: AIAA/AAS astrodynamics specialist conference and exhibit, Monterey, CA, AIAA Paper 2002–4908. doi:10.2514/6.2002-4908

  • Subbarao K, Shippey BM (2009) Hybrid genetic algorithm collocation method for trajectory optimization. J Guid Control Dyn 32(4):1396–1403. doi:10.2514/1.41449

    Article  Google Scholar 

  • Venter G, Sobieski JS (2003) Particle swarm optimization. AIAA J 41(8):1583–1589. doi:10.2514/2.2111

    Article  Google Scholar 

  • Widhalm JW, Heise SA (1991) Optimal in-plane orbital evasive maneuvers using continuous thrust propulsion. J Guid Control Dyn 14(6):1323–1326. doi:10.2514/3.20793

    Article  Google Scholar 

  • Wong RE (1967) Some aerospace differential games. J Spacecr Rockets 4(11):1460–1465. doi:10.2514/3.29114

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the Ministry of Science and Technology Fund Project (Grant No. 2015DFA81640), Aeronautical Science Foundation of China (Grant No. 20130179002) at the Huazhong University of Science and Technology, National Natural Science Foundation of China (Grant No. 61370185), Natural Science Foundation of Guangdong Province (Grant Nos. S2013010013432, S2013010015940), Science and Technology Planning Project of Huizhou (Grant Nos. 2014B050013016, 2014B020004023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renfu Li.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Li, R., Hu, L. et al. Optimal solution to orbital three-player defense problems using impulsive transfer. Soft Comput 22, 2921–2934 (2018). https://doi.org/10.1007/s00500-017-2545-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-017-2545-3

Keywords

Navigation