Skip to main content
Log in

Value-at-risk forecasts by dynamic spatial panel GJR-GARCH model for international stock indices portfolio

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

To provide accurate value-at-risk (VaR) forecasts for the returns of international stock indices portfolio, this paper proposes a dynamic spatial panel with generalized autoregressive conditional heteroscedastic model (DSP-GJR-GARCH). The proposed model considers the spatiotemporal dependence as well as asymmetric volatility of returns, with the theories of spatial econometrics. We construct an economic spatial weight matrix and set part of the initial estimated values as unknown parameters to get more acute of parameter estimations. After that, we compare the proposed model with three closely related models including GARCH, spatiotemporal-AR, dynamic spatial panel GARCH models, with respect to the performances of daily volatility and VaR forecasting. The empirically comparative data involve six composite indices of major countries, namely USA (DJI), German (DAX), France (FCHI), U.K. (ISEQ), Japan (N225) and China (SSE). The comparative computational results show that, since the proposed model considers spatial dependence and time series correlation simultaneously, it could get more accurate prediction of VaR than the three ones. Moreover, the findings reveal that the predictive accuracy of a spatial regressive model can be improved by considering asymmetric volatility in the disturbances. Thus, we can conclude that DSP-GJR-GARCH model performs better than the other three compared models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. According to the commonly used approach, for instance in Mendes et al. (2010) and Weiß and Supper (2013), we will assign the realized portfolio with equal weight. Thus, the proportion is 0.1667 for every stock index. But the weight in estimated portfolio return is the weight that can minimize portfolio variance.

References

  • Aboura S, Wagner N (2016) Extreme asymmetric volatility: stress and aggregate asset prices. J Int Financ Mark Inst Money 41:47–59

    Article  Google Scholar 

  • Ajilore O, Amialchuk A, Xiong W et al (2014) Uncovering peer effects mechanisms with weight outcomes using spatial econometrics. Soc Sci J 51(4):645–651

    Article  Google Scholar 

  • Aloui R, Aïssa MSB, Nguyen DK (2013) Conditional dependence structure between oil prices and exchange rates: a copula-GARCH approach. J Int Money Finance 3:2719–738

    Google Scholar 

  • Alper Gormus N (2016) Do different time-horizons in volatility have any significance for the emerging markets? Econ Lett 145:29–32

    Article  Google Scholar 

  • Amaral A, Abreu M, Mendes V (2014) The spatial probit model—an application to the study of banking crises at the end of the 1990’s. Phys A 415:251–260

    Article  MathSciNet  Google Scholar 

  • Anselin L (1988) Spatial econometrics: methods and models. Kluwer, Dordrecht

    Book  MATH  Google Scholar 

  • Arbia G, Di Marcantonio M (2015) Forecasting interest rates using geostatistical techniques. Econometrica 3(4):733–760

    Article  Google Scholar 

  • Arnold M, Stahlberg S, Wied D (2013) Modeling different kinds of spatial dependence in stock returns. Empir Econ 44(2):761–774

    Article  Google Scholar 

  • Arshanalli B, Doukas J (1993) International stock market linkages: evidence from the pre- and post-October 1987 period. J Bank Finance 17:193–208

    Article  Google Scholar 

  • Badinger H, Egger P (2011) Estimation of higher-order spatial autoregressive cross-section models with heteroscedastic disturbances. Pap Reg Sci 90:213–235

    Article  Google Scholar 

  • Balamash A, Pedrycz W, Al-Hmouz R, Morfeq A (2017) Perspective-oriented data analysis through the development of information granules of order 2. Int J Approx Reason 85:97–106

    Article  MathSciNet  MATH  Google Scholar 

  • Baltagi BH, Bresson G, Pirotte A (2012) Forecasting with spatial panel data. Comput Stat Data Anal 56(11):3381–3397

    Article  MathSciNet  MATH  Google Scholar 

  • Baruník J, Kočenda E, Vácha L (2016) Asymmetric connectedness on the U.S. stock market: bad and good volatility spillovers. J Financ Mark 27:55–78

    Article  Google Scholar 

  • Bekaert G, Engstrom E, Ermolov A (2015) Bad environments, good environments: a non-Gaussian asymmetric volatility model. J Econom 186(1):258–275

    Article  MathSciNet  MATH  Google Scholar 

  • Bollerslev T (1986) Generalized autoregressive conditional heteroscedasticity. J Econom 31:307–327

    Article  MathSciNet  MATH  Google Scholar 

  • Byström HNE (2004) Managing extreme risks in tranquil and volatile markets using conditional extreme value theory. Int Rev Financ Anal 13(2):133–152

    Article  MathSciNet  Google Scholar 

  • Chiu MC, Pun CS, Wong HY (2017) Big data challenges of high-dimensional continuous-time mean–variance portfolio selection and a remedy. Risk Anal 37(8):1532–1549

    Article  Google Scholar 

  • Christoffersen PF (1998) Evaluating interval forecasts. Int Econ Rev 39(4):841–862

    Article  MathSciNet  Google Scholar 

  • Degiannakis S, Floros C, Dent P (2013) Forecasting value-at-risk and expected shortfall using fractionally integrated models of conditional volatility: international evidence. Int Rev Financ Anal 27:21–33

    Article  Google Scholar 

  • Deng L, Ma C, Yang W (2011) Portfolio optimization via pair copula-GARCH–EVT–CVaR model. Syst Eng Procedia 2:171–181

    Article  Google Scholar 

  • Doğan O, Taşpınar S (2013) GMM estimation of spatial autoregressive models with moving average disturbances. Reg Sci Urban Econ 43:903–926

    Article  Google Scholar 

  • Doğan O, Taşpınar S (2014) Spatial autoregressive models with unknown heteroskedasticity: a comparison of Bayesian and robust GMM approach. Reg Sci Urban Econ 45:1–21

    Article  Google Scholar 

  • Elhorst JP (2008) Serial and spatial error correlation. Econ Lett 100(3):422–424

    Article  MathSciNet  MATH  Google Scholar 

  • Elhorst JP (2010) Dynamic panels with endogenous interaction effects when T is small. Reg Sci Urban Econ 40:272–282

    Article  Google Scholar 

  • Elhorst JP, Lacombe DJ, Piras G (2012) On model specification and parameter space definitions in higher order spatial econometric models. Reg Sci Urban Econ 42(1–2):211–220

    Article  Google Scholar 

  • Fernández-Avilés G, Montero J (2016) Spatio-temporal modeling of financial maps from a joint multi-dimensional scaling-geostatistical perspective. Expert Syst Appl 60:280–293

    Article  Google Scholar 

  • Fernández-Avilés G, Montero J, Orlov AG (2012) Spatial modeling of stock market comovements. Finance Res Lett 9(4):202–212

    Article  Google Scholar 

  • Fingleton B, Palombi S (2013) Spatial panel data estimation, counterfactual predictions, and local economic resilience among British towns in the Victorian era. Reg Sci Urban Econ 43(4):649–660

    Article  Google Scholar 

  • Fousekis P, Grigoriadis V (2016) Spatial price dependence by time scale: empirical evidence from the international butter markets. Econ Model 54:195–204

    Article  Google Scholar 

  • Gong P, Weng Y (2016) Value-at-risk forecasts by a spatiotemporal model in Chinese stock market. Physica A 441:173–191

    Article  Google Scholar 

  • Hansen PR, Lunde A (2005) A forecast comparison of volatility models: does anything beat a GARCH (1, 1)? J Appl Econom 20(7):873–889

    Article  MathSciNet  Google Scholar 

  • Hisao H, Pesaran MH, Tahmiscioglu AK (2002) Maximum likelihood estimation of fixed effects dynamic panel data models covering short time periods. J Econom 109:107–150

    Article  MathSciNet  MATH  Google Scholar 

  • Hu S, Yang H, Cai B, Yang C (2013) Research on spatial economic structure for different economic sectors from a perspective of a complex network. Physica A 392(17):3682–3697

    Article  MathSciNet  Google Scholar 

  • Huang BN, Yang CW, Johan WSHu (2000) Causality and cointegration of stock market among the United States, Japan and the South China Growth Triangle. Int Rev Financ Anal 9(3):281–297

    Article  Google Scholar 

  • Hung JC (2015) Robust Kalman filter based on a fuzzy GARCH model to forecast volatility using particle swarm optimization. Soft Comput 19:2861–2869

    Article  Google Scholar 

  • Ince O, Papell DH (2013) The (un)reliability of real-time output gap estimates with revised data. Econ Model 33:713–721

  • Jorion P (1991) Bayesian and CAPM estimators of the means: implications for portfolio selection. J Bank Finance 15:717–727

    Article  Google Scholar 

  • Kelejian HH, Prucha IR (2010) Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances. J Econom 157(1):53–67

    Article  MathSciNet  MATH  Google Scholar 

  • Koulakiotis A, Babalos V, Papasyriopoulos N (2015) Liquidity matters after all: asymmetric news and stock market volatility before and after the global financial crisis. Econ Lett 127:58–60

    Article  Google Scholar 

  • Kupiec PH (1995) Techniques for verifying the accuracy of risk measurement models. J Deriv 3:73–84

    Article  Google Scholar 

  • Kurtz W, Lapin A, Schilling OS, Tang Q et al (2017) Integrating hydrological modelling, data assimilation and cloud computing for real-time management of water resources. Environ Model Softw 93:418–435

  • Lai Y, Chen CWS, Gerlach R (2009) Optimal dynamic hedging via copula-threshold-GARCH models. Math Comput Simul 79(8):2609–2624

    Article  MathSciNet  MATH  Google Scholar 

  • Laih Y (2014) Measuring rank correlation coefficients between financial time series: a GARCH-copula based sequence alignment algorithm. Eur J Oper Res 232:375–382

    Article  MathSciNet  MATH  Google Scholar 

  • LeSage JP, Pace RK (2009) Introduction to spatial econometrics. Taylor & Francis/CRC Press, New York

    Book  MATH  Google Scholar 

  • Liu SF, Yang Z (2015) Modified QML estimation of spatial autoregressive models with unknown heteroskedasticity and nonnormality. Reg Sci Urban Econ 52:50–70

    Article  Google Scholar 

  • Markowitz H (1952) Portfolio selection. J Finance 7:77–91

    Google Scholar 

  • Mendes B, Semeraro M, Leal R (2010) Pair-copulas modeling in finance. Financ Mark Portf Manag 24:193–213

    Article  Google Scholar 

  • Millo G (2014) Maximum likelihood estimation of spatially and serially correlated panels with random effects. Comput Stat Data Anal 71:914–933

    Article  MathSciNet  Google Scholar 

  • Moscone F, Tosetti E, Canepa A (2014) Real estate market and financial stability in US metropolitan areas: a dynamic model with spatial effects. Reg Sci Urban Econ 49:129–146

    Article  Google Scholar 

  • Orhan M, Köksal B (2012) A comparison of GARCH models for VaR estimation. Expert Syst Appl 39:3582–3592

    Article  Google Scholar 

  • Revelli F (2006) Handbook of fiscal federalism. Edward Elgar Publishing Limited, Washington, pp 106–130

    Google Scholar 

  • Robinson PM, Thawornkaiwong S (2012) Statistical inference on regression with spatial dependence. J Econom 167:521–542

    Article  MathSciNet  MATH  Google Scholar 

  • Schmitt T, Schäfer R, Wied D, Guhr T (2016) Spatial dependence in stock returns: local normalization and VaR forecasts. Empir Econ 50:1091–1109

    Article  Google Scholar 

  • Su L (2012) Semiparametric GMM estimation of spatial autoregressive models. J Econom 167:543–560

    Article  MathSciNet  MATH  Google Scholar 

  • Wang Z, Chen X, Jin Y, Zhou Y (2010) Estimating risk of foreign exchange portfolio: using VaR and CVaR based on GARCH–EVT-copula model. Physica A 389:4918–4928

    Article  Google Scholar 

  • Wang X, Pedrycz W, Gacek A, Liu X (2016) From numeric data to information granules: a design through clustering and the principle of justifiable granularity. Knowl Based Syst 101:100–113

    Article  Google Scholar 

  • Weiß GNF, Supper H (2013) Forecasting liquidity-adjusted intraday value-at-risk with vine copulas. J Bank Finance 37:3334–3350

    Article  Google Scholar 

  • Weng Y, Gong P (2016) Modeling spatial and temporal dependencies among global stock markets. Expert Syst Appl 43:175–185

    Article  Google Scholar 

  • Wu ZY, Ji MH, Su HL (2011) Global contagion of the U.S. financial crisis—an exploratory spatial data analysis. In: The 19th international conference on GeoInformatics, vol 6, pp 1–4

  • Xu X, Lee L (2015) Maximum likelihood estimation of a spatial autoregressive Tobit model. J Econom 188:264–280

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu HQ, Lu ZD, Wang SY (2004) Causal linkages among Shanghai, Shenzhen and Hong Kong stock markets. Int J Theor Appl Finance 7(2):135–149

    Article  MATH  Google Scholar 

  • Zhu B, Füss R, Rottke NB (2013) Spatial linkages in returns and volatilities among US regional housing markets. Real Estate Econ 41(1):29–64

    Article  Google Scholar 

Download references

Acknowledgements

The paper is supported by the National Natural Science Foundation of China (Nos. 71720107002, 71571054 and 71501076), Guangdong Natural Science Foundation (No. 2017A030312001) and Guangzhou financial service innovation and risk management research base, as well as 2017 Guangxi high school innovation team and outstanding scholars plan (T3110097911).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Li Mo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by X. Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, WG., Mo, GL., Liu, F. et al. Value-at-risk forecasts by dynamic spatial panel GJR-GARCH model for international stock indices portfolio. Soft Comput 22, 5279–5297 (2018). https://doi.org/10.1007/s00500-017-2979-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-017-2979-7

Keywords

Navigation