Skip to main content

Advertisement

Log in

A new bi-objective fuzzy portfolio selection model and its solution through evolutionary algorithms

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In this paper, a new bi-objective fuzzy portfolio selection model is proposed, for which Sharp ratio (SR) and Value at Risk ratio (VR) of a portfolio are chosen as objectives. SR is an important nonsystematic risk measurement that examines the investment risk by aspiring the diversification of the capital allocation. On the other hand, VR measures the systematic risk, which reduces the largest loss of an investment at a given confidence level. The proposed fuzzy portfolio model assumes both SR and VR as maximization objectives for which the associated fuzzy parameters are considered as triangular fuzzy numbers. The proposed model is solved using multi-objective genetic algorithms, namely multi-objective cellular genetic algorithm (MOCell), archive-based hybrid scatter search (AbYSS), and nondominated sorting genetic algorithm II (NSGA-II). We have used a data set from the Shenzhen Stock Exchange to illustrate the performance of the proposed model and algorithms. Finally, a comparative study in terms of five standard performance metrics is presented, among the MOCell, AbYSS, and NSGA-II algorithms that are mentioned extensively in various research articles to exhibit the best suitable algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amenc N, Martellini L, Vaissié M (2003) Benefits and risks of alternative investment strategies. J Asset Manag 4(2):96–118

    Article  Google Scholar 

  • Artzner P, Delbaen F, Eber JM, Heath D (1999) Coherent measures of risk. Math Finance 9(3):203–228

    Article  MathSciNet  MATH  Google Scholar 

  • Bai XJ, Liu YK (2014) Semideviations of reduced fuzzy variables: a possibility approach. Fuzzy Optim Decis Mak 13(2):173–196

    Article  MathSciNet  MATH  Google Scholar 

  • Bawa VS (1975) Optimal rules for ordering uncertain prospects. J Financ Econ 2(1):95–121

    Article  Google Scholar 

  • Bhattacharyya R, Kar S (2011) Possibilistic mean–variance–skewness portfolio selection models. Int J Oper Res 8(3):44–56

    MathSciNet  Google Scholar 

  • Bhattacharyya R, Hossain SA, Kar S (2014) Fuzzy cross-entropy, mean, variance, skewness models for portfolio selection. J King Saud Univ Comput Inf Sci 26(1):79–87

    Article  Google Scholar 

  • Carlsson C, Full’er R (2001) On possibilistic mean value and variance of fuzzy numbers. Fuzzy Sets Syst 122:315–326

    Article  MathSciNet  MATH  Google Scholar 

  • Charpentier A, Oulidi A (2009) Estimating allocations for value-at-risk portfolio optimization. Math Methods Oper Res 69(3):395–410

    Article  MathSciNet  MATH  Google Scholar 

  • Chen YJ, Liu YK, Wu XL (2012) A new risk criterion in fuzzy environment and its application. Appl Math Model 36(6):3007–3028

    Article  MathSciNet  MATH  Google Scholar 

  • Coello CAC, Pulido GT, Lechuga MS (2004) Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comput 8(3):265–279

    Article  Google Scholar 

  • Deb K, Agrawal RB (1995) Simulated binary crossover for continuous search space. Complex Syst 9(2):115–148

    MathSciNet  MATH  Google Scholar 

  • Deb K, Tiwari S (2006) Omni-optimizer: a generic evolutionary algorithm for single and multi-objective optimization. Eur J Oper Res 185(3):1062–1087

    Article  MathSciNet  MATH  Google Scholar 

  • Deb K, Pratap A, Agarwal S, Meyariyan T (2002) A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6:182–197

    Article  Google Scholar 

  • Dowd K (1999) A value at risk approach to risk-return analysis. J Portf Manag 25:60–67

    Article  Google Scholar 

  • Dubois D, Prade H (1988) Possibility theory. Plenum, New York

    Book  MATH  Google Scholar 

  • Feinstein CD, Thapa MN (1993) A reformulation of a mean-absolute deviation portfolio optimization model. Manag Sci 39:1552–1553

    Article  MATH  Google Scholar 

  • Feng M, Wächter A, Staum J (2015) Practical algorithms for value-at-risk portfolio optimization problems. Quant Finance Lett 3(1):1–9

    Article  Google Scholar 

  • Fishburn DC (1977) Mean-risk analysis with risk associated with below-target returns. Am Econ Rev 67:117–126

    Google Scholar 

  • Fonseca CM, Fleming PJ (1993) Genetic algorithms for multi-objective optimization: formulation, discussion and generalization. In: Proceedings of the fifth international conference on genetic algorithms, pp 416–423

  • Glover F (1997) A template for scatter search and path relinking. In: Hao J, Lutton E, Ronald E, Shoenauer M, Snyers D (eds) Lecture Notes in Computer Science. Springer, Berlin, pp 13–54

    Google Scholar 

  • Glover F, Laguna M, Martí R (2000) Fundamentals of scatter search and path relinking. Control Cybern 29(3):653–684

    MathSciNet  MATH  Google Scholar 

  • Glover F, Laguna M, Martí R (2003) Scatter search. In: Ghosh A, Tsutsui S (eds) Advances in evolutionary computing: theory and applications. Springer, Berlin, pp 519–537

    Chapter  Google Scholar 

  • Goh JW, Lim KG, Sim M, Zhang W (2012) Portfolio value-at-risk optimization for asymmetrically distributed asset returns. Eur J Oper Res 221(2):397–406

    Article  MathSciNet  MATH  Google Scholar 

  • Guo SN, Yu LA, Li X, Kar S (2016) Fuzzy multi-period portfolio selection with different investment horizons. Eur J Oper Res 254(3):1026–1035

    Article  MathSciNet  MATH  Google Scholar 

  • Horn J, Nafploitis N, Goldberg DE (1994) A niched Pareto genetic algorithm for multiobjective optimization. Evol Comput 1:82–87

    Google Scholar 

  • Huang XX (2006) Fuzzy chance-constrained portfolio selection. Appl Math Comput 177:500–507

    MathSciNet  MATH  Google Scholar 

  • Huang X (2007) Portfolio selection with fuzzy returns. J Intell Fuzzy Syst 18:383–390

    MATH  Google Scholar 

  • Jorion PH (1996) Value at risk: a new benchmark for measuring derivatives risk. Irwin Professional Publishers, New York

    Google Scholar 

  • Jorion P (2006) Value at risk: the new benchmark for managing financial risk, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  • Kaplan PD, Knowles JA (2004) Kappa: a generalized downside risk-adjusted performance measure. J Perform Meas 8(3):42–54

    Google Scholar 

  • Keating C, Shadwick WF (2002) A universal performance measure. J Perform Meas 6(3):59–84

    Google Scholar 

  • Knowles J, Corne D (1999) The Pareto archived evolution strategy: a new baseline algorithm for multi-objective optimization. In: Congress on evolutionary computation (CEC). IEEE Press, Piscataway, NJ, pp 9–105

  • Konno H, Suzuki K (1995) A mean–variance–skewness optimization model. J Oper Res Soc Jpn 38:137–187

    Article  MATH  Google Scholar 

  • Konno H, Yamakazi H (1991) Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market. Manag Sci 37(5):519–531

    Article  Google Scholar 

  • Krokhmal P, Zabarankin M, Uryasev S (2011) Modeling and optimization of risk. Surv Oper Res Manag Sci 16(2):49–66

    Google Scholar 

  • Lai TY (1991) Portfolio selection with skewness: a multi-objective approach. Rev Quant Financ Acc 1:293–305

    Article  Google Scholar 

  • Li X (2013) Credibilistic programming. Springer, Heidelberg

    Book  MATH  Google Scholar 

  • Li X, Liu B (2006) A sufficient and necessary condition for credibility measures. Int J Uncertain Fuzziness Knowl Based Syst 14(5):527–535

    Article  MathSciNet  MATH  Google Scholar 

  • Li X, Qin ZF, Kar S (2010) Mean–variance–skewness model for portfolio selection with fuzzy returns. Eur J Oper Res 202:239–247

    Article  MATH  Google Scholar 

  • Li X, Shou BY, Qin ZF (2012) An expected regret minimization portfolio selection model. Eur J Oper Res 218:484–492

    Article  MathSciNet  MATH  Google Scholar 

  • Linsmeier TJ, Pearson ND (2000) Value at risk. Financ Anal J 56(2):47–67

    Article  Google Scholar 

  • Liu B (2004) Uncertainty theory. Springer, Berlin

    Book  Google Scholar 

  • Liu Y, Wu X, Hao F (2012) A new chance–variance optimization criterion for portfolio selection in uncertain decision systems. Expert Syst Appl 39(6):6514–6526

    Article  Google Scholar 

  • Manganelli S, Engle RF (2001) Value at risk models in finance. Technical Report, European Central Bank, Frankfurt am Main

  • Markowitz H (1952) Portfolio selection. J Finance 7(1):77–91

    Google Scholar 

  • Nebro AJ, Luna F, Alba E, Dorronsoro B, Durillo JJ, Beham A (2008) AbYSS: adapting scatter search to multi-objective optimization. IEEE Trans Evol Comput 12(4):439–457

    Article  Google Scholar 

  • Nebro AJ, Durillo JJ, Luna F, Dorronsoro B, Alba E (2009) MOCell: a cellular genetic algorithm for multi-objective optimization. Int J Intell Syst 24(6):726–746

    Article  MATH  Google Scholar 

  • Nguyen TT, Gordon-Brown L, Khosravi A, Creighton D, Nahavandi S (2015) Fuzzy portfolio allocation models through a new risk measure and fuzzy Sharpe ratio. IEEE Trans Fuzzy Syst 23(3):656–676

    Article  Google Scholar 

  • Pedrycz W (2005) Knowledge-based clustering: from data to information granules. John Wiley & Sons

  • Pedrycz W, Homenda W (2013) Building the fundamentals of granular computing: a principle of justifiable granularity. Appl Soft Comput 13(9):4209–4218

    Article  Google Scholar 

  • Rockafellar TR, Uryaser SP (2000) Optimization of conditional value-at-risk. J Risk 2(3):21–41

    Article  Google Scholar 

  • Sharpe WF (1966) Mutual fund performance. J Bus 39:119–138

    Article  Google Scholar 

  • Sharpe WF (1994) The Sharpe ratio. J Portf Manag 21(1):49–58

    Article  Google Scholar 

  • Simaan Y (1997) Estimation risk in portfolio selection: the mean variance model versus the mean absolute deviation model. Manag Sci 43:1437–1446

    Article  Google Scholar 

  • Sortino FA, van der Meer R (1991) Downside risk. J Portf Manag 17(4):27–31

    Article  Google Scholar 

  • Srinivas N, Deb K (1995) Multi-objective optimization using nondominated sorting in genetic algorithms. Evolut Comput 2(3):221–248

    Article  Google Scholar 

  • Van Veldhuizen DA, Lamont GB (1998) Technical Report TR-98-03, Department of Electronics and Computer Engineering, Graduate School of Engineering, Air Force Institute of Technology, Wright-Patterson, AFB, OH

  • Wang S, Liu YK (2015) Modeling renewal processes in fuzzy decision system. Appl Math Model 39(5–6):1536–1553

    Article  MathSciNet  Google Scholar 

  • Wang S, Watada J (2012) Fuzzy stochastic optimization: theory, models and applications. Springer, New York

    Book  MATH  Google Scholar 

  • Wang S, Watada J, Pedrycz W (2009) Value-at-risk-based two-stage fuzzy facility location problems. IEEE Trans Ind Inform 5(4):465–482

    Article  Google Scholar 

  • Wang B, Wang S, Watada J (2011) Fuzzy-portfolio-selection models with value-at-risk. IEEE Trans Fuzzy Syst 19(4):758–769

    Article  Google Scholar 

  • Wang S, Ng TS, Wong M (2016) Expansion planning for waste-to-energy systems using waste forecast prediction sets. Nav Res Logist 63(1):47–70

    Article  MathSciNet  MATH  Google Scholar 

  • Watada J (1997) Fuzzy portfolio selection and its application to decision making. Tatra Mt Math Publ 13(4):219–248

    MathSciNet  MATH  Google Scholar 

  • Yang SC, Lin TL, Chang TJ, Chang KJ (2011) A semi-variance portfolio selection model for military investment assets. Expert Syst Appl 38(3):2292–2301

    Article  Google Scholar 

  • Yoshida Y (2009) An estimation model of value-at-risk portfolio under uncertainty. Fuzzy Sets Syst 160(22):3250–3262

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf. Control 8(3):338–353

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang Q, Li H (2007) MOEA/D: a multi-objective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731

    Google Scholar 

  • Zhou A, Jin Y, Zhang Q, Sendho B, Tsang E (2006) Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion. In: 2006 IEEE congress on evolutionary computation, Sheraton Vancouver Wall Center Vancouver, BC, Canada, pp 3234–3241

  • Zhou J, Li X, Kar S, Zhang G, Yu H (2017) Time consistent fuzzy multi-period rolling portfolio optimization with adaptive risk aversion factor. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-017-0478-4

    Article  Google Scholar 

  • Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans Evolut Comput 3(4):257–271

    Article  Google Scholar 

  • Zitzler E, Laumanns M, Thiele L (2001) SPEA2: improving the strength Pareto evolutionary algorithm. Computer engineering and networks laboratory, Department of electrical engineering, Technical Report, 103

  • Zitzler E, Thiele L, Laumanns M, Fonseca CM, da Fonseca VG (2003) Performance assessment of multi-objective optimizers: an analysis and review. IEEE Trans Evol Comput 7(2):117–132

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very much thankful to the Editor and the anonymous referees for their constructive and valuable suggestions to enhance the quality of the manuscript. Moreover, Saibal Majumder, an INSPIRE fellow (Fellowship No.: DST/INSPIREFellowship/2015/IF150410) is indebted to the Department of Science & Technology (DST), Ministry of Science and Technology, Government of India, for providing him financial assistance for the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samarjit Kar.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kar, M.B., Kar, S., Guo, S. et al. A new bi-objective fuzzy portfolio selection model and its solution through evolutionary algorithms. Soft Comput 23, 4367–4381 (2019). https://doi.org/10.1007/s00500-018-3094-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-018-3094-0

Keywords

Navigation