Skip to main content
Log in

Price discrimination based on purchase behavior and service cost in competitive channels

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

With the recent emergence of cloud computing and big data technologies, collection of consumers’ information is widespread. Retailers use consumers’ purchase history and consumptive habits data to price discriminate between current and new, high-cost and low-cost consumers. We investigate behavior-based pricing (BBP) and consumers cost-based pricing (CCP) simultaneously in a competitive two-period market in which bricks and clicks retailers sell products to high-cost-type and low-cost-type consumers during two periods. We examine how the price discrimination affects the channel members’ prices, market shares and profits. We find that dual price discriminations (BBP and CCP) decrease the service cost advantage retailer’s profit, but increase the service cost disadvantage retailer’s profit if the consumer’s travel cost is low. Compared the market shares of retailers, it is interesting that a cost advantage retailer serves more type-H consumers under the case of BBP and CCP than other cases. In addition, our results illustrate that cost disadvantage retailers prefer to reward the current consumers in the second period. Additionally, we find that consumers may benefit from price discrimination that they face a lower price in the case of BBP and CCP than other cases under certain conditions. Even more egregious, the current type-H consumers served by the cost advantage retailer enjoy a lower price than the type-L consumers served by the competitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Acquisti A, Varian HR (2005) Conditioning prices on purchase history. Mark Sci 24(3):367–381

    Article  Google Scholar 

  • Bread PM-W (2016) 8 ways retailers are tracking your every move. Money (September 23). http://time.com/money/4506297/howretailerstrackyou

  • Caillaud B, De Nijs R (2014) Strategic loyalty reward in dynamic price discrimination. Mark Sci 33(5):725–742

    Article  Google Scholar 

  • Chen Y (2008) Dynamic price discrimination with asymmetric firms. J Ind Econ 56(4):729–751

    Article  Google Scholar 

  • Chen Y, Zhang ZJ (2009) Dynamic targeted pricing with strategic consumers. Int J Ind Organ 27(1):43–50

    Article  Google Scholar 

  • Chen H, Yan Y, Liu Z, Xing T (2018a) Effect of risk attitude on out-sourcing leadership preferences with demand uncertainty. Soft Comput 22(16):5263–5278

    Article  Google Scholar 

  • Chen J, Liang L, Yao DQ (2018b) Factory encroachment and channel selection in an outsourced supply chain. Int J Prod Econ. https://doi.org/10.1016/j.ijpe.2018.05.003

    Article  Google Scholar 

  • Choe C, King S, Matsushima N (2017) Pricing with cookies: behavior-based price discrimination and spatial competition. Manag Sci 64(12):5669–5687

    Article  Google Scholar 

  • Fazli A, Shulman JD (2018) Implications of market spillovers. Manag Sci 64(11):4996–5013

    Article  Google Scholar 

  • Forsyth J, Gupta A, Haldar S, Marn MV (2000) Shedding the commodity mind-set. McKinsey Quart 37(4):78–86

    Google Scholar 

  • Fudenberg D, Tirole J (2000) Customer poaching and brand switching. RAND J Econ 31(4):634–657

    Article  Google Scholar 

  • Hartmann WR, Viard VB (2008) Do frequency reward programs create switching costs? A dynamic structural analysis of demand in a reward program. Quant Mark Econ 6(2):109–137

    Article  Google Scholar 

  • Kim BD, Shi M, Srinivasan K (2001) Reward programs and tacit collusion. Mark Sci 20(2):99–120

    Article  Google Scholar 

  • Kireyev P, Kumar V, Ofek E (2017) Match your own price? Self-matching as a retailers multichannel pricing strategy. Mark Sci 36(6):908–930

    Article  Google Scholar 

  • Kuksov D, Lin Y (2010) Information provision in a vertically differentiated competitive marketplace. Mark Sci 29(1):122–138

    Article  Google Scholar 

  • Lehmann-Grube U (1997) Strategic choice of quality when quality is costly: the persistence of the high-quality advantage. RAND J Econ 28(2):372–384

    Article  Google Scholar 

  • Li KJ (2018) Behavior-based pricing in marketing channels. Mark Sci 37(2):310–326

    Article  Google Scholar 

  • Moorthy KS (1988) Product and price competition in a duopoly. Mark Sci 7(2):141–168

    Article  Google Scholar 

  • Musalem A, Joshi YV (2009) Research note how much should you invest in each customer relationship? A competitive strategic approach. Mark Sci 28(3):555–565

    Article  Google Scholar 

  • Pazgal A, Soberman D (2008) Behavior-based discrimination: Is it a winning play, and if so, when? Mark Sci 27(6):977–994

    Article  Google Scholar 

  • Parlar M (1988) Game theoretic analysis of the substitutable product inventory problem with random demands. Nav Res Logist (NRL) 35(3):397–409

    Article  MathSciNet  Google Scholar 

  • Popescu I, Wu Y (2007) Dynamic pricing strategies with reference effects. Oper Res 55(3):413–429

    Article  MathSciNet  Google Scholar 

  • Rhee KE, Thomadsen R (2016) Behavior-based pricing in vertically differentiated industries. Manag Sci 63(8):2729–2740

    Article  Google Scholar 

  • Rust RT, Zeithaml VA, Lemon KN (2000) Driving customer equity: how customer lifetime value is reshaping corporate strategy. Free Press, New York

    Google Scholar 

  • Seligman TJ, Taylor JD (2000) FTC Reverses Privacy Policy. New York Law J, June 19. www.loeb.com/CM/Articles/articles24.asp

  • Shaked A, Sutton J (1982) Relaxing price competition through product differentiation. Rev Econ Stud 49(1):3–13

    Article  MathSciNet  Google Scholar 

  • Shin J, Sudhir K (2010) A customer management dilemma: When is it profitable to reward one’s own customers? Mark Sci 29(4):671–689

    Article  Google Scholar 

  • Shin J, Sudhir K, Yoon DH (2012) When to “fire” customers: customer cost-based pricing. Manag Sci 58(5):932–947

    Article  Google Scholar 

  • Shin J, Sudhir K (2013) Should you punish or reward current customers? MIT Sloan Manag Rev 55(1):59–64

    Google Scholar 

  • Subramanian U, Raju JS, Zhang ZJ (2013) The strategic value of high-cost customers. Manag Sci 60(2):494–507

    Article  Google Scholar 

  • Tan Y, Carrillo JE (2017) Strategic analysis of the agency model for digital goods. Prod Oper Manag 26(4):724–741

    Article  Google Scholar 

  • Taylor CR (2004) Consumer privacy and the market for customer information. RAND J Econ 35(4):631–650

    Article  Google Scholar 

  • Villas-Boas JM (1999) Dynamic competition with customer recognition. Rand J Econ 30(4):604–631

    Article  Google Scholar 

  • Zhang J (2011) The perils of behavior-based personalization. Mark Sci 30(1):170–186

    Article  Google Scholar 

  • Zhang K, Sarvary M (2015) Differentiation with user-generated content. Manag Sci 61(4):898–914

    Article  Google Scholar 

  • Zhou C, Tang W, Zhao R (2015) Optimal consumer search with prospectutility in hybrid uncertain environment. J Uncertain Anal Appl 3(6):1–20

    Google Scholar 

  • Zhou C, Tang W, Zhao R (2017) Optimal consumption with reference-dependent preferences in on-the-jobsearch and savings. J Ind Manag Optim 13(1):503–527

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 71771164 and 71702129), Humanity and Social Science Youth Foundation of Ministry of Education of China (No. 17YJC630232).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wansheng Tang.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by Y. Ni.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Proposition 1

In the case of no price discrimination, retailers’ profits in two periods are identical. Thus, they can simply maximize their per period profits:

$$\begin{aligned} \pi _{A1}^\mathrm{{ND}}= & {} (p_{A1}^\mathrm{{ND}}-s_{A}^{H})x_{1}^\mathrm{{ND}}+p_{A1}^\mathrm{{ND}}x_{1}^\mathrm{{ND}},\\ \pi _{B1}^\mathrm{{ND}}= & {} (p_{B1}^\mathrm{{ND}}-s_{B}^{H})(1-x_{1}^\mathrm{{ND}})+p_{B1}^\mathrm{{ND}}(1-x_{1}^\mathrm{{ND}}), \end{aligned}$$

where \(x_{1}^\mathrm{{ND}}=\frac{t+p_{B1}^\mathrm{{ND}}-p_{A1}^\mathrm{{ND}}}{2t}\).

Solving the first-order optimality conditions:

$$\begin{aligned} \left\{ \begin{aligned}&\frac{\partial \pi _{A1}^\mathrm{{ND}}}{\partial p_{A1}^\mathrm{{ND}}}=\frac{2t+2p_{B1}^\mathrm{{ND}}-4p_{A1}^\mathrm{{ND}}+s_{A}^{H}}{2t}=0,\\&\frac{\partial \pi _{B1}^\mathrm{{ND}}}{\partial p_{B1}^\mathrm{{ND}}}=\frac{2t-4p_{B1}^\mathrm{{ND}}+2p_{A1}^\mathrm{{ND}}+s_{B}^{H}}{2t}=0, \end{aligned} \right. \end{aligned}$$

we obtain \({p_{A1}^\mathrm{{ND}}}^{\!*}=t+\frac{s_{A}^{H}}{3}+\frac{s_{B}^{H}}{6}\) and \({p_{B1}^\mathrm{{ND}}}^{\!*}=t+\frac{s_{A}^{H}}{6}+\frac{s_{B}^{H}}{3}\).

Correspondingly, substituting \({p_{A1}^\mathrm{{ND}}}^{\!*}\) and \({p_{B1}^\mathrm{{ND}}}^{\!*}\) to the retailers A’s and B’s market demands, we obtain \({D_{A1}^\mathrm{{ND}}}^{\!*}=x_{1}^\mathrm{{ND}}=1-\frac{s_{A}^{H}-s_{B}^{H}}{6t}\) and \({D_{B1}^\mathrm{{ND}}}^{\!*}=1-x_{1}^\mathrm{{ND}}=1+\frac{s_{A}^{H}-s_{B}^{H}}{6t}\), to the profits, we obtain \({\pi _{A}^\mathrm{{ND}}}^{\!*}=\frac{(-6t+s_{A}^{H}-s_{B}^{H})^{2}}{9t}\), and \({\pi _{B}^\mathrm{{ND}}}^{\!*}=\frac{(6t+s_{A}^{H}-s_{B}^{H})^{2}}{9t}\). \(\square \)

Proof of Lemma 1

In the case of single price discrimination (BBP), we solve the two periods backward, solving first for the second-period equilibrium strategies.

The retailer A aims to decide the optimal prices \(p_{A2}^\mathrm{{O\!-\!SD}}\) and \(p_{A2}^\mathrm{{N\!-\!SD}}\) to maximize the second-period profit

$$\begin{aligned} \begin{aligned} \pi _{A2}^{\mathrm{{SD}}}&= (p_{A2}^\mathrm{{O\!-\!SD}}-s_{A}^{H})x_{A}^\mathrm{{H\!-\!SD}}+p_{A2}^\mathrm{{O\!-\!SD}}x_{A}^\mathrm{{L\!-\!SD}}\\&+\,(p_{A2}^\mathrm{{N\!-\!SD}}-s_{A}^{H})(x_{B}^\mathrm{{H\!-\!SD}}-x_{1}^\mathrm{{SD}})\\&+\,p_{A2}^\mathrm{{N\!-\!SD}}(x_{B}^\mathrm{{L\!-\!SD}}\!-x_{1}^\mathrm{{SD}}), \end{aligned} \end{aligned}$$
(14)

and retailer B aims to decide the optimal prices \(p_{B2}^\mathrm{{O\!-\!SD}}\) and \(p_{B2}^\mathrm{{N\!-\!SD}}\) to maximize the second-period profit

$$\begin{aligned} \begin{aligned} \pi _{B2}^{\mathrm{{SD}}}&=\, (p_{B2}^\mathrm{{O\!-\!SD}}-s_{B}^{H})(1-x_{B}^\mathrm{{H\!-\!SD}})\\&+\,p_{B2}^\mathrm{{O\!-\!SD}}(1-x_{B}^\mathrm{{L\!-\!SD}})\\&+\,(p_{B2}^\mathrm{{N\!-\!SD}}-s_{B}^{H})(x_{1}^\mathrm{{SD}}-x_{A}^\mathrm{{H\!-\!SD}})+p_{B2}^\mathrm{{N\!-\!SD}}(x_{1}^\mathrm{{SD}}-x_{A}^\mathrm{{L\!-\!SD}}), \end{aligned} \end{aligned}$$
(15)

where \(x_{A}^\mathrm{{H\!-\!SD}}=x_{A}^\mathrm{{L\!-\!SD}}=\frac{t+p_{B2}^\mathrm{{N\!-\!SD}}-p_{A2}^\mathrm{{O\!-\!SD}}}{2t}\), \(x_{B}^\mathrm{{H\!-\!SD}}=x_{B}^\mathrm{{L\!-\!SD}}=\frac{t+p_{B2}^\mathrm{{O\!-\!SD}}-p_{A2}^\mathrm{{N\!-\!SD}}}{2t}.\)

The Hessian for the retailers A’s and B’s profits is given by

$$\begin{aligned} H_{A}=H_{B}=\left[ \begin{array}{cc} -\frac{2}{t}&{} 0\\ 0 &{} -\frac{2}{t}\\ \end{array} \right] , \end{aligned}$$

which can deduce that the retailers’ profits are concavity.

Then, solving the first-order optimality conditions:

$$\begin{aligned} \left\{ \begin{aligned}&\frac{\partial \pi _{A2}^\mathrm{{SD}}}{\partial p_{A2}^\mathrm{{N\!-\!SD}}}=\frac{(2-4x_{1}^\mathrm{{SD}})t+2p_{B2}^\mathrm{{O\!-\!SD}}+s_{A}^{H}-4p_{A2}^\mathrm{{N\!-\!SD}}}{2t}=0,\\&\frac{\partial \pi _{A2}^\mathrm{{SD}}}{\partial p_{A2}^\mathrm{{O\!-\!SD}}}=\frac{2t+2p_{B2}^\mathrm{{N\!-\!SD}}-4p_{A2}^\mathrm{{O\!-\!SD}}+s_{A}^{H}}{2t}=0,\\&\frac{\partial \pi _{B2}^\mathrm{{SD}}}{\partial p_{B2}^\mathrm{{N\!-\!SD}}}=\frac{(4x_{1}^\mathrm{{SD}}-2)t+2p_{A2}^\mathrm{{O\!-\!SD}}+s_{B}^{H}-4p_{B2}^\mathrm{{N\!-\!SD}}}{2t}=0,\\&\frac{\partial \pi _{B2}^\mathrm{{SD}}}{\partial p_{B2}^\mathrm{{O\!-\!SD}}}=\frac{2t+2p_{A2}^\mathrm{{N\!-\!SD}}-4p_{B2}^\mathrm{{O\!-\!SD}}+s_{B}^{H}}{2t}=0,\\ \end{aligned} \right. \end{aligned}$$

we can obtain the results as shown in Lemma 1. \(\square \)

Proof of Proposition 2

The retailer A’s first-period profit in the case of BBP

$$\begin{aligned} \pi _{A1}^\mathrm{{SD}}=(p_{A1}^\mathrm{{SD}}-s_{A}^{H})x_{1}^\mathrm{{SD}}+p_{A1}^\mathrm{{SD}}x_{1}^\mathrm{{SD}}, \end{aligned}$$

and the retailer B’s first-period profit in the case of BBP

$$\begin{aligned} \pi _{B1}^\mathrm{{SD}}=(p_{B1}^\mathrm{{SD}}-s_{B}^{H})(1-x_{1}^\mathrm{{SD}})+p_{B1}^\mathrm{{SD}}(1-x_{1}^\mathrm{{SD}}), \end{aligned}$$

where \(x_{1}^\mathrm{{SD}}=\frac{8t-6p_{A1}+6p_{B1}+s_{A}^{H}-s_{B}^{H}}{16t}\).

Similar to the proof of Proposition 1, by substituting Lemma 1’s results to retailers A’s and B’s profits and solving the first-order conditions, we obtain the retailers A’s and B’s optimal first-period prices as shown in Proposition 2.

In addition, by substituting Lemma 1’s results to the retailer A’s first-market demand \(D_{A1}^\mathrm{{SD}}=2x_{1}^\mathrm{{SD}}\) and the second market demand \(D_{A2}^\mathrm{{SD}}=x_{A}^\mathrm{{H\!-\!SD}}+x_{A}^\mathrm{{L\!-\!SD}}+x_{B}^\mathrm{{H\!-\!SD}}+x_{B}^\mathrm{{L\!-\!SD}}-2x_{1}^\mathrm{{SD}}\), retailer B’s first-market demand \(D_{B1}^\mathrm{{SD}}=2(1-x_{1}^\mathrm{{SD}})\) and the second-market demand \(D_{B2}^\mathrm{{SD}}=2-x_{B}^\mathrm{{H\!-\!SD}}-x_{B}^\mathrm{{L\!-\!SD}}-x_{A}^\mathrm{{H\!-\!SD}}-x_{A}^\mathrm{{L\!-\!SD}}+2x_{1}^\mathrm{{SD}}\), we can obtain the results as shown in Proposition 2.

Finally, we get the retailers A’s and B’s optimal profits \(\pi _{A}^\mathrm{{SD}}\) and \(\pi _{B}^\mathrm{{SD}}\) as shown in Proposition 2. \(\square \)

Proof of Corollary 1

Comparing the retailers’ prices over two periods and based on the assumption \(t>\frac{5}{16}|s_{A}^{H}-s_{B}^{H}|\), we obtain \({p_{A1}^\mathrm{{SD}}}^{\!*}-{p_{A2}^\mathrm{{N\!-\!SD}}}^{\!*}=t>0\), \({p_{B1}^\mathrm{{SD}}}^{\!*}-{p_{B2}^\mathrm{{N\!-\!SD}}}^{\!*}=t>0\), \({p_{A1}^\mathrm{{SD}}}^{\!*}-{p_{A2}^\mathrm{{O\!-\!SD}}}^{\!*}=\frac{2}{3}t+\frac{1}{16}(s_{A}^{H}-s_{B}^{H})>0\), \({p_{B1}^\mathrm{{SD}}}^{\!*}-{p_{B2}^\mathrm{{O\!-\!SD}}}^{\!*}=\frac{2}{3}t+\frac{1}{16}(s_{B}^{H}-s_{A}^{H})>0\), \({p_{A2}^\mathrm{{N\!-\!SD}}}^{\!*}-{p_{A2}^\mathrm{{O\!-\!SD}}}^{\!*}=-\frac{1}{3}t+\frac{1}{16}(s_{A}^{H}-s_{B}^{H})<0\), \({p_{B2}^\mathrm{{N\!-\!SD}}}^{\!*}-{p_{A2}^\mathrm{{O\!-\!SD}}}^{\!*}=-\frac{1}{3}t-\frac{1}{16}(s_{A}^{H}+s_{B}^{H})<0\), which can deduce the results as shown in Corollary 1. \(\square \)

Proof of Lemma 2

In the case of dual price discrimination (BBP and CCP), we solve the two periods backward, solving first for the second-period equilibrium strategies.

The retailer A aims to decide the optimal prices \(p_{A2}^\mathrm{{H\!-\!D\!D}}\), \(p_{A2}^\mathrm{{L\!-\!D\!D}}\) and \(p_{A2}^\mathrm{{N\!-\!SD}}\) to maximize the second-period profit

$$\begin{aligned} \begin{aligned} \pi _{A2}^{\mathrm{{D\!D}}}=&(p_{A2}^\mathrm{{H\!-\!D\!D}}-s_{A}^{H})x_{A}^\mathrm{{H\!-\!D\!D}}+p_{A2}^\mathrm{{L\!-\!D\!D}}x_{A}^\mathrm{{L\!-\!D\!D}}+(p_{A2}^\mathrm{{N\!-\!D\!D}}-s_{A}^{H})\\&\times \,(x_{B}^\mathrm{{H\!-\!D\!D}}-x_{1}^\mathrm{{D\!D}})+p_{A2}^\mathrm{{N\!-\!D\!D}}(x_{B}^\mathrm{{L\!-\!D\!D}}-x_{1}^\mathrm{{D\!D}}),\\ \end{aligned} \end{aligned}$$

and retailer B aims to decide the optimal prices \(p_{B2}^\mathrm{{H\!-\!D\!D}}\), \(p_{B2}^\mathrm{{L\!-\!D\!D}}\) and \(p_{B2}^\mathrm{{N\!-\!SD}}\) to maximize the second-period profit

$$\begin{aligned} \begin{aligned} \pi _{B2}^{\mathrm{{SD}}}=&(p_{B2}^\mathrm{{H\!-\!D\!D}}-s_{B}^{H})(1-x_{B}^\mathrm{{H\!-\!D\!D}}+p_{B2}^\mathrm{{L\!-\!D\!D}}(1-x_{B}^\mathrm{{L\!-\!D\!D}})\\&+(p_{B2}^\mathrm{{N\!-\!D\!D}}-s_{B}^{H})(x_{1}^\mathrm{{D\!D}}-x_{A}^\mathrm{{H\!-\!D\!D}})+p_{B2}^\mathrm{{N\!-\!D\!D}}(x_{1}^\mathrm{{D\!D}}-x_{A}^\mathrm{{L\!-\!D\!D}}),\\ \end{aligned} \end{aligned}$$

where \(x_{A}^\mathrm{{i\!-\!D\!D}}=\frac{t+p_{B2}^\mathrm{{N\!-\!D\!D}}-p_{A2}^\mathrm{{i\!-\!D\!D}}}{2t}\) and \(x_{B}^\mathrm{{i\!-\!D\!D}}=\frac{t+p_{B2}^\mathrm{{i\!-\!D\!D}}-p_{A2}^\mathrm{{N\!-\!D\!D}}}{2t}\), \(i\in \{H,L\}\).

The Hessian for the retailers A’s and B’s profits is given by

$$\begin{aligned} H_{A}^\mathrm{{\!D\!D}}=H_{B}^\mathrm{{\!D\!D}}=\left[ \begin{array}{ccc} -\frac{2}{t}&{} 0 &{} 0\\ 0 &{} -\frac{1}{t}&{} 0\\ 0 &{} 0 &{} -\frac{1}{t}\\ \end{array} \right] , \end{aligned}$$

which can deduce that the retailers’ profits are concavity.

Then, similar to the proof of Lemma 1, solving the first-order optimality conditions:

$$\begin{aligned} \left\{ \begin{aligned}&\frac{\partial \pi _{A2}^\mathrm{{D\!D}}}{\partial p_{A2}^\mathrm{{N\!-\!D\!D}}}=\frac{4p_{B2}^\mathrm{{\!H\!-\!D\!D}}-16p_{A2}^\mathrm{{\!N\!-\!D\!D}}+6p_{A1}^\mathrm{{D\!D}}-6p_{B1}^\mathrm{{D\!D}}+3s_{A}^{H}+s_{B}^{H}+4p_{B2}^{\!L\!-\!D\!D}}{8t}=0,\\&\frac{\partial \pi _{A2}^\mathrm{{D\!D}}}{\partial p_{A2}^\mathrm{{H\!-\!D\!D}}}=\frac{t+p_{B2}^\mathrm{{N\!-\!D\!D}}-2p_{A2}^\mathrm{{H\!-\!D\!D}}+s_{A}^{H}}{2t}=0,\\&\frac{\partial \pi _{A2}^\mathrm{{D\!D}}}{\partial p_{A2}^\mathrm{{L\!-\!D\!D}}}=\frac{t+p_{B2}^\mathrm{{N\!-\!D\!D}}-2p_{A2}^\mathrm{{L\!-\!D\!D}}}{2t}=0,\\&\frac{\partial \pi _{B2}^\mathrm{{D\!D}}}{\partial p_{B2}^\mathrm{{N\!-\!D\!D}}}=\frac{4p_{A2}^\mathrm{{\!H\!-\!D\!D}}-16p_{B2}^\mathrm{{\!N\!-\!D\!D}}+6p_{B1}^\mathrm{{D\!D}}-6p_{A1}^\mathrm{{D\!D}}+3s_{B}^{H}+s_{A}^{H}+4p_{A2}^{\!L\!-\!D\!D}}{8t}=0,\\&\frac{\partial \pi _{B2}^\mathrm{{D\!D}}}{\partial p_{B2}^\mathrm{{H\!-\!D\!D}}}=\frac{t+p_{A2}^\mathrm{{N\!-\!D\!D}}-2p_{B2}^\mathrm{{H\!-\!D\!D}}+s_{B}^{H}}{2t}=0,\\&\frac{\partial \pi _{B2}^\mathrm{{D\!D}}}{\partial p_{B2}^\mathrm{{L\!-\!D\!D}}}=\frac{t+p_{A2}^\mathrm{{N\!-\!D\!D}}-2p_{B2}^\mathrm{{L\!-\!D\!D}}}{2t}=0,\\ \end{aligned} \right. \end{aligned}$$

we can obtain the results as shown in Lemma 2. \(\square \)

Proof of Proposition 3

The proof is similar to Proposition 2. \(\square \)

Proof of Corollary 2

First, comparing the second-period prices between the current type-H consumers and new consumers in the case of BBP and CCP, we obtain: \({p_{A2}^\mathrm{{H-\!D\!D}}}^{\!*}-{p_{A2}^\mathrm{{N-\!D\!D}}}^{\!*}=\frac{1}{16}s_{B}^{H}+\frac{3}{16}s_{A}^{H}+\frac{1}{3}t>0\), \({p_{B2}^\mathrm{{H-\!D\!D}}}^{\!*}-{p_{B2}^\mathrm{{N-\!D\!D}}}^{\!*}=\frac{1}{16}s_{A}^{H}+\frac{3}{16}s_{B}^{H}+\frac{1}{3}t>0\), which can deduce the results as shown in Corollary 2 (i).

Second, comparing the second-period prices between the current type-L consumers and new consumers in the case of BBP and CCP, we can write that

$$\begin{aligned} {p_{A2}^\mathrm{{N-\!D\!D}}}^{\!*}-{p_{A2}^\mathrm{{L-\!D\!D}}}^{\!*}=-\frac{1}{3}t+\frac{5}{16}s_{A}^{H}-\frac{1}{16}s_{B}^{H}, \end{aligned}$$
(16)

solving \({p_{A2}^\mathrm{{N-\!D\!D}}}^{\!*}-{p_{A2}^\mathrm{{L-\!D\!D}}}^{\!*}>0\), we obtain \(t<\frac{15}{16}s_{A}^{H}-\frac{3}{16}s_{B}^{H}\).

And then, based on the assumption that \(t>\frac{5}{16}|s_{A}^{H}-s_{B}^{H}|\), we can obtain that the condition \(t<\frac{15}{16}s_{A}^{H}-\frac{3}{16}s_{B}^{H}\) is satisfied when \(s_{A}^{H}>\frac{2}{5}s_{B}^{H}\) .

Similar to the above analysis, solving \({p_{B2}^\mathrm{{N-\!D\!D}}}^{\!*}-{p_{B2}^\mathrm{{L-\!D\!D}}}^{\!*}>0\) based on the assumption, we can obtain the result shown in Corollary 2 (iii). \(\square \)

Proof of Corollary 3

Comparing the retailer’s second-period demand of the type-H consumers to the first period, we can write that \({D_{A2}^\mathrm{{H\!-\!D\!D}}}^{\!*}-{D_{A1}^\mathrm{{H\!-\!D\!D}}}^{\!*}=x_{A}^\mathrm{{H\!-\!D\!D}}+x_{B}^\mathrm{{H\!-\!D\!D}}-2x_{1}^\mathrm{{D\!D}}=\frac{s_{B}^{H}-s_{A}^{H}}{4t}\).

Thus, if \(s_{B}^{H}>s_{A}^{H}\), then \({D_{A2}^\mathrm{{H\!-\!D\!D}}}^{\!*}-{D_{A1}^\mathrm{{H\!-\!D\!D}}}^{\!*}>0\), otherwise, \({D_{A2}^\mathrm{{H\!-\!D\!D}}}^{\!*}-{D_{A1}^\mathrm{{H\!-\!D\!D}}}^{\!*}<0\). \(\square \)

Proof of Proposition 4

Through Propositions 2 and 3, we obtain that the first-period prices in the case of single price discrimination and dual price discrimination are equal, i.e., \({p_{A1}^\mathrm{{\!D\!D}}}^{\!*}={p_{A1}^\mathrm{{SD}}}^{\!*}\) and \({p_{B1}^\mathrm{{\!D\!D}}}^{\!*}={p_{B1}^\mathrm{{SD}}}^{\!*}\).

In addition, comparing the retailer’s first-period prices in the environment of price discrimination and no price discrimination, we can obtain: \({p_{A1}^\mathrm{{\!D\!D}}}^{\!*}-{p_{A1}^\mathrm{{ND}}}^{\!*}=\frac{1}{3}t+\frac{1}{24}(s_{A}^{H}-s_{B}^{H})\), and \({p_{B1}^\mathrm{{\!D\!D}}}^{\!*}-{p_{B1}^\mathrm{{ND}}}^{\!*}=\frac{1}{3}t+\frac{1}{24}(s_{B}^{H}-s_{A}^{H})\).

Because t satisfies the assumption \(t>\frac{5}{16}|s_{A}^{H}-s_{B}^{H}|\), which can deduce that \(\frac{1}{3}t>\frac{5}{48}|s_{A}^{H}-s_{B}^{H}|>\frac{1}{24}|s_{A}^{H}-s_{B}^{H}|\), thus \({p_{A1}^\mathrm{{\!D\!D}}}^{\!*}-{p_{A1}^\mathrm{{ND}}}^{\!*}>0\) and \({p_{B1}^\mathrm{{\!D\!D}}}^{\!*}-{p_{B1}^\mathrm{{ND}}}^{\!*}>0\). \(\square \)

Proof of Proposition 5

Through Propositions 2 and 3, we obtain that the second-period prices for new consumers in the case of single price discrimination and dual price discrimination are equal, i.e., \({p_{A2}^\mathrm{{N\!-\!D\!D}}}^{\!*}={p_{A2}^\mathrm{{N\!-\!SD}}}^{\!*}\) and \({p_{B2}^\mathrm{{N\!-\!D\!D}}}^{\!*}={p_{B2}^\mathrm{{N\!-\!SD}}}^{\!*}\).

In addition, comparing the retailer’s second-period price for new consumers in the case of price discrimination and the second-period price in the case of no price discrimination, we obtain: \({p_{A2}^\mathrm{{N\!-\!D\!D}}}^{\!*}-{p_{A2}^\mathrm{{ND}}}^{\!*}=-\frac{2}{3}t+\frac{1}{24}(s_{A}^{H}-s_{B}^{H})\), \({p_{B2}^\mathrm{{N\!-\!D\!D}}}^{\!*}-{p_{B2}^\mathrm{{ND}}}^{\!*}=-\frac{2}{3}t+\frac{1}{24}(s_{B}^{H}-s_{A}^{H})\).

Based on the assumption, we can deduce that \(-\frac{2}{3}t<-\frac{5}{24}|s_{A}^{H}-s_{B}^{H}|<-\frac{1}{24}|s_{A}^{H}-s_{B}^{H}|\). Thus, we can obtain the results as shown in Proposition 5. \(\square \)

Proof of Proposition 6

In the case of BBP and no price discrimination, the prices of the current type-H consumers in the second period are \({p_{A2}^\mathrm{{O\!-\!SD}}}^{\!*}\) and \({p_{A2}^\mathrm{{\!ND}}}^{\!*}\).

First, comparing the current type-H consumers’ second-period prices in the case of BBP with that in other cases, we can obtain: \({p_{A2}^\mathrm{{O\!-\!SD}}}^{\!*}-{p_{A2}^\mathrm{{H\!-\!D\!D}}}^{\!*}=-\frac{1}{4}s_{A}^{H}<0\), \({p_{B2}^\mathrm{{O\!-\!SD}}}^{\!*}-{p_{B2}^\mathrm{{H\!-\!D\!D}}}^{\!*}=-\frac{1}{4}s_{B}^{H}<0\), \({p_{A2}^\mathrm{{O\!-\!SD}}}^{\!*}-{p_{A2}^\mathrm{{\!ND}}}^{\!*}=-\frac{1}{3}t-\frac{1}{48}s_{A}^{H}-\frac{1}{48}s_{B}^{H}<0\), \({p_{B2}^\mathrm{{O\!-\!SD}}}^{\!*}-{p_{B2}^\mathrm{{\!ND}}}^{\!*}=-\frac{1}{3}t+\frac{1}{48}s_{A}^{H}-\frac{1}{48}s_{B}^{H}<0\), which can deduce the results as shown in Proposition 6 (i).

Next, comparing the second-period prices for the current type-H consumers in the case of dual price discrimination and no price discrimination, we can obtain: \({p_{A2}^\mathrm{{H\!-\!D\!D}}}^{\!*}-{p_{A2}^\mathrm{{\!ND}}}^{\!*}=-\frac{1}{3}t+\frac{11}{48}s_{A}^{H}+\frac{1}{48}s_{B}^{H}\) and \({p_{B2}^\mathrm{{H\!-\!D\!D}}}^{\!*}-{p_{A2}^\mathrm{{\!ND}}}^{\!*}=-\frac{1}{3}t+\frac{1}{48}s_{A}^{H}+\frac{11}{48}s_{B}^{H}\).

Solving \({p_{A2}^\mathrm{{H\!-\!D\!D}}}^{\!*}-{p_{A2}^\mathrm{{\!ND}}}^{\!*}<0\) for t, we obtain \(t>\frac{1}{16}s_{B}^{H}+\frac{11}{16}s_{A}^{H}\). Combined with the assumptions, it can deduce that if \(s_{A}^{H}<\frac{1}{4}s_{B}^{H}\), \({p_{A2}^\mathrm{{H\!-\!D\!D}}}^{\!*}-{p_{A2}^\mathrm{{\!ND}}}^{\!*}<0\) holds for all t, while if \(s_{A}^{H}>\frac{1}{4}s_{B}^{H}\), \({p_{A2}^\mathrm{{H\!-\!D\!D}}}^{\!*}-{p_{A2}^\mathrm{{\!ND}}}^{\!*}<0\) holds for \(t>\frac{1}{16}s_{B}^{H}+\frac{11}{16}s_{A}^{H}\). \(\square \)

Proof of Proposition 7

The proof is similar to Proposition 6. \(\square \)

Proof of Proposition 8

Through the comparison between \({p_{i2}^\mathrm{{H\!-\!D\!D}}}^{\!*}\) and \({p_{i2}^\mathrm{{L\!-\!D\!D}}}^{\!*}\), \({p_{i2}^\mathrm{{H\!-\!D\!D}}}^{\!*}\) and \({p_{i2}^\mathrm{{N\!-\!D\!D}}}^{\!*}\), it can easily obtain the results shown in Proposition 8 (i).

Because the current type-H and type-L consumers in the same channel face the same price under the cases of BBP and non-price discrimination, and comparing different types of consumers between different channels, we obtain: \({p_{A2}^\mathrm{{O\!-\!SD}}}^{\!*}-{p_{B2}^\mathrm{{O\!-\!SD}}}^{\!*}=\frac{1}{8}(s_{A}^{H}-s_{B}^{H})\). It can deduce that \({{p_{A2}^\mathrm{{O\!-\!SD}}}^{\!*}}^{\!*}-{{p_{B2}^\mathrm{{O\!-\!SD}}}^{\!*}}^{\!*}>0\) holds if \(s_{A}^{H}>s_{B}^{H}\). Similarly, solving \({p_{A2}^\mathrm{{ND}}}^{\!*}-{p_{B2}^\mathrm{{ND}}}^{\!*}<0\), we obtain \(s_{A}^{H}>s_{B}^{H}\). \(\square \)

Proof of Proposition 9

Given the retailers’ first-period demands: \({D_{A1}^\mathrm{{\!ND}}}^{\!*}=1-\frac{s_{A}^{H}-s_{B}^{H}}{6t}\), \({D_{A1}^\mathrm{{\!SD}}}^{\!*}=1-\frac{s_{A}^{H}-s_{B}^{H}}{16t}\), \({D_{A1}^\mathrm{{\!D\!D}}}^{\!*}=1-\frac{s_{A}^{H}-s_{B}^{H}}{16t}\), \({D_{B1}^\mathrm{{\!ND}}}^{\!*}=1+\frac{s_{A}^{H}-s_{B}^{H}}{6t}\), \({D_{B1}^\mathrm{{\!SD}}}^{\!*}=1+\frac{s_{A}^{H}-s_{B}^{H}}{16t}\), \({D_{B1}^\mathrm{{\!D\!D}}}^{\!*}=1+\frac{s_{A}^{H}-s_{B}^{H}}{16t}\), we can obtain the results shown in Proposition 9 (i) through simple comparisons.

Based on the previous analysis, we obtain if \(s_{A}^{H}>s_{B}^{H}\), then \(D_{A1}^{j*}<D_{B1}^{j*}\), otherwise \(D_{A1}^{j*}>D_{B1}^{j*}\), \(j\in \{\mathrm{ND}, \mathrm{SD}, \mathrm{DD}\}\). According to the definition \(\varDelta _{A1-B1}^\mathrm{{D\!D}}=|{D_{A1}^\mathrm{{D\!D}}}^{\!*}-{D_{B1}^\mathrm{{D\!D}}}^{\!*}|=|1-\frac{s_{A}^{H}-s_{B}^{H}}{8t}|\), \(\varDelta _{A1-B1}^\mathrm{{SD}}=|{D_{A1}^\mathrm{{SD}}}^{\!*}-{D_{B1}^\mathrm{{SD}}}^{\!*}|=|1-\frac{s_{A}^{H}-s_{B}^{H}}{8t}|\), \(\varDelta _{A1-B1}^\mathrm{{ND}}=|{D_{A1}^\mathrm{{ND}}}^{\!*}-{D_{B1}^\mathrm{{ND}}}^{\!*}|=|1-\frac{s_{A}^{H}-s_{B}^{H}}{3t}|\), we obtain that if \(s_{A}^{H}>s_{B}^{H}\), \(\varDelta _{A1-B1}^\mathrm{{D\!D}}=\varDelta _{A1-B1}^\mathrm{{SD}}=\frac{s_{A}^{H}-s_{B}^{H}}{8t}-1\), \(\varDelta _{A1-B1}^\mathrm{{ND}}=\frac{s_{A}^{H}-s_{B}^{H}}{3t}-1\), which can deduce \(\varDelta _{A1-B1}^\mathrm{{D\!D}}=\varDelta _{A1-B1}^\mathrm{{SD}}<\varDelta _{A1-B1}^\mathrm{{ND}}\). And if \(s_{A}^{H}<s_{B}^{H}\), \(\varDelta _{A1-B1}^\mathrm{{D\!D}}=\varDelta _{A1-B1}^\mathrm{{SD}}=1-\frac{s_{A}^{H}-s_{B}^{H}}{8t}\), \(\varDelta _{A1-B1}^\mathrm{{ND}}=\frac{1-s_{A}^{H}-s_{B}^{H}}{3t}\), which can also deduce \(\varDelta _{A1-B1}^\mathrm{{D\!D}}=\varDelta _{A1-B1}^\mathrm{{SD}}<\varDelta _{A1-B1}^\mathrm{{ND}}\). \(\square \)

Proof of Proposition 10

Given the retailers’ second-period demands: \({D_{A2}^\mathrm{{\!ND}}}^{\!*}=1-\frac{s_{A}^{H}-s_{B}^{H}}{6t}\), \({D_{A2}^\mathrm{{\!SD}}}^{\!*}=1-\frac{5(s_{A}^{H}-s_{B}^{H})}{16t}\), \({D_{A2}^\mathrm{{\!D\!D}}}^{\!*}=1-\frac{5(s_{A}^{H}-s_{B}^{H})}{16t}\), \({D_{B2}^\mathrm{{\!ND}}}^{\!*}=1+\frac{s_{A}^{H}-s_{B}^{H}}{6t}\), \({D_{B2}^\mathrm{{\!SD}}}^{\!*}=1+\frac{5(s_{A}^{H}-s_{B}^{H})}{16t}\), \({D_{B2}^\mathrm{{\!D\!D}}}^{\!*}=1+\frac{5(s_{A}^{H}-s_{B}^{H})}{16t}\), the following proof is similar to Proposition 9. \(\square \)

Proof of Proposition 11

Comparing the two-period demands as given in the proof of Propositions 9 and 10 under different pricing discriminations, we can obtain: \(\varTheta _{A2-A1}^\mathrm{{\!D\!D}}={D_{A2}^\mathrm{{\!D\!D}}}^{\!*}-{D_{A1}^\mathrm{{\!D\!D}}}^{\!*}=\frac{s_{B}^{H}-s_{A}^{H}}{4t}\), \(\varTheta _{A2-A1}^\mathrm{{\!SD}}={D_{A2}^\mathrm{{\!SD}}}^{\!*}-{D_{A1}^\mathrm{{\!SD}}}^{\!*}=\frac{s_{B}^{H}-s_{A}^{H}}{4t}\), \(\varTheta _{B2-B1}^\mathrm{{\!D\!D}}={D_{B2}^\mathrm{{\!D\!D}}}^{\!*}-{D_{B1}^\mathrm{{\!D\!D}}}^{\!*}=\frac{s_{A}^{H}-s_{B}^{H}}{4t}\), \(\varTheta _{B2-B1}^\mathrm{{\!SD}}={D_{B2}^\mathrm{{\!SD}}}^{\!*}-{D_{B1}^\mathrm{{\!SD}}}^{\!*}=\frac{s_{A}^{H}-s_{B}^{H}}{4t}\). Therefore, Proposition 11 can be deduced naturally. \(\square \)

Proof of Proposition 12

According to the results given in the paper, retailers’ profits in the first period are: \({\pi _{A1}^\mathrm{{\!ND}}}^{\!*}=\frac{(s_{A}^{H}-s_{B}^{H}-6t)^2}{36t}\), \({\pi _{A1}^\mathrm{{SD}}}^{\!*}=\frac{(s_{A}^{H}-s_{B}^{H}-16t)(3s_{A}^{H}-3s_{B}^{H}-32t)}{384t}\), \({\pi _{A1}^\mathrm{{D\!D}}}^{\!*}=\frac{(s_{A}^{H}-s_{B}^{H}-16t)(3s_{A}^{H}-3s_{B}^{H}-32t)}{384t}\).

Comparing \({\pi _{A1}^\mathrm{{\!ND}}}^{\!*}\) and \({\pi _{A1}^\mathrm{{\!SD}}}^{\!*}\), we obtain: \({\pi _{A1}^\mathrm{{\!ND}}}^{\!*}-{\pi _{A1}^\mathrm{{\!SD}}}^{\!*}=\frac{-384t^2-144(s_{A}^{H}-s_{B}^{H})t+23(s_{A}^{H}-s_{B}^{H})^2}{1152t}\). Solving \({\pi _{A1}^\mathrm{{\!ND}}}^{\!*}-{\pi _{A1}^\mathrm{{\!SD}}}^{\!*}=0\) at t, we obtain \({\hat{t}}_{1}=\frac{1}{8}(\frac{\sqrt{219}}{6}-\frac{3}{2})(s_{A}^{H}-s_{B}^{H})\) and \({\hat{t}}_{2}=\frac{1}{8}(-\frac{\sqrt{219}}{6}-\frac{3}{2})(s_{A}^{H}-s_{B}^{H})\).

Obviously, if \(s_{A}^{H}-s_{B}^{H}>0\) and \(t<{\hat{t}}_{1}\), or \(s_{A}^{H}-s_{B}^{H}<0\) and \(t<{\hat{t}}_{2}\), we obtain \({\pi _{A1}^\mathrm{{\!ND}}}^{\!*}>{\pi _{A1}^\mathrm{{\!SD}}}^{\!*}\). However, based on the assumption that \(t>\frac{5}{16}(s_{A}^{H}-s_{B}^{H})\), we find that if \(s_{A}^{H}-s_{B}^{H}>0\), then \(t>{\hat{t}}_{1}\); thus, the cost disadvantage retailer A’s first-period profits satisfies \({\pi _{A1}^\mathrm{{\!ND}}}^{\!*}<{\pi _{A1}^\mathrm{{\!SD}}}^{\!*}={\pi _{A1}^\mathrm{{\!D\!D}}}^{\!*}\).

The proofs of retailer’s B first-period profits and retailers’ second-period profits under different pricing strategies are similar. \(\square \)

Proof of Proposition 13

Comparing \({\pi _{A2}^\mathrm{{\!SD}}}^{\!*}\) and \({\pi _{A1}^\mathrm{{\!SD}}}^{\!*}\), \({\pi _{A2}^\mathrm{{\!D\!D}}}^{\!*}\) and \({\pi _{A1}^\mathrm{{\!D\!D}}}^{\!*}\), we obtain:

$$\begin{aligned}&{\pi _{A2}^\mathrm{{\!SD}}}^{\!*}\!-\!{\pi _{A1}^\mathrm{{\!SD}}}^{\!*}\\&\quad =\frac{-1792t^2-288(s_{A}^{H}-s_{B}^{H})t+99{(s_{A}^{H}-s_{B}^{H})}^2}{2304t},\\&{\pi _{A2}^\mathrm{{\!D\!D}}}^{\!*}\!-\!{\pi _{A1}^\mathrm{{\!D\!D}}}^{\!*}\\&\quad =\frac{-1792t^2\!-\!288(s_{A}^{H}-s_{B}^{H})t\!+\!99(s_{A}^{H}-s_{B}^{H})^2+144{s_{A}^{H}}(s_{A}^{H}-2s_{B}^{H})}{2304t}, \end{aligned}$$

thus \({\pi _{A2}^\mathrm{{\!D\!D}}}^{\!*}-{\pi _{A1}^\mathrm{{\!D\!D}}}^{\!*}\!-\!({\pi _{A2}^\mathrm{{\!SD}}}^{\!*}\!-\!{\pi _{A1}^\mathrm{{\!SD}}}^{\!*})\!=\!\frac{144{s_{A}^{H}}(s_{A}^{H}\!-\!2s_{B}^{H})}{2304t}.\)

Clearly, when \(s_{A}^{H}-2s_{B}^{H}>0\), \({\pi _{A2}^\mathrm{{\!D\!D}}}^{\!*}-{\pi _{A1}^\mathrm{{\!D\!D}}}^{\!*}>{\pi _{A2}^\mathrm{{\!SD}}}^{\!*}-{\pi _{A1}^\mathrm{{\!SD}}}^{\!*}\). Similarly, we can obtain the results of retailer B’s profits. \(\square \)

Proof of Proposition 14

According to the results obtained in Propositions 1, 2, and 3, we compare the retailer A’s profits \({\pi _{A}^\mathrm{{ND}}}^{\!*}\), \({\pi _{A}^\mathrm{{SD}}}^{\!*}\) and \({\pi _{A}^\mathrm{{D\!D}}}^{\!*}\) in pairs as follows:

$$\begin{aligned} \begin{aligned}&{\pi _{A}^\mathrm{{D\!D}}}^{\!*}\!-\!{\pi _{A}^\mathrm{{ND}}}^{\!*}\\&\quad =\frac{-256t^2-288(s_{A}^{H}-s_{B}^{H})t\!+\!7(s_{A}^{H}-s_{B}^{H})^2\!+\!144{s_{A}^{H}}(s_{A}^{H}-2s_{B}^{H})}{2304t},\\&{\pi _{A}^\mathrm{{D\!D}}}^{\!*}-{\pi _{A}^\mathrm{{SD}}}^{\!*}=\frac{s_{A}^{H}(s_{A}^{H}-2s_{B}^{H})}{16t},\\&{\pi _{A}^\mathrm{{SD}}}^{\!*}-{\pi _{A}^\mathrm{{ND}}}^{\!*}=\frac{-256t^2-288(s_{A}^{H}-s_{B}^{H})t+7(s_{A}^{H}-s_{B}^{H})^2}{2304t}.\\ \end{aligned} \end{aligned}$$

Solving \({\pi _{A}^\mathrm{{D\!D}}}^{\!*}-{\pi _{A}^\mathrm{{ND}}}^{\!*}>0\) and \({\pi _{A}^\mathrm{{D\!D}}}^{\!*}-{\pi _{A}^\mathrm{{SD}}}^{\!*}>0\), we obtain

$$\begin{aligned}&t{<}\frac{9}{16}(s_{A}^{H}-s_{B}^{H}){+}\frac{1}{8} \sqrt{22(s_{A}^{H}-s_{B}^{H})^2+36s_{A}^{H}(s_{A}^{H}-2s_{B}^{H})}\\&\quad \mathrm {and} \ s_{A}^{H}>2s_{B}^{H}. \end{aligned}$$

In combination with assumption, we can deduce the result in Proposition 14 (i).

Solving \({\pi _{A}^\mathrm{{SD}}}^{\!*}-{\pi _{A}^\mathrm{{D\!D}}}^{\!*}>0\) and \({\pi _{A}^\mathrm{{SD}}}^{\!*}-{\pi _{A}^\mathrm{{ND}}}^{\!*}>0\), we obtain

$$\begin{aligned} t<\frac{1}{16}(9+2\sqrt{22})(s_{A}^{H}-s_{B}^{H}) \ \ \mathrm {and} \ s_{B}^{H}<s_{A}^{H}<2s_{B}^{H}. \end{aligned}$$

In combination with assumption, we can deduce the result in Proposition 14 (ii).

In other situations, Proposition 14 (iii) is established.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, M., Tang, W. & Zhou, C. Price discrimination based on purchase behavior and service cost in competitive channels. Soft Comput 24, 2567–2588 (2020). https://doi.org/10.1007/s00500-019-03760-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-019-03760-7

Keywords

Navigation