Skip to main content
Log in

Multi-view heterogeneous fusion and embedding for categorical attributes on mixed data

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Categorical attributes are ubiquitous in real-world collected data. However, such attributes lack a well-defined distance metric and cannot be directly manipulated per algebraic operations, so many data mining algorithms are unable to work directly on them. Learning an appropriate metric or an effective numerical embedding is very vital yet challenging, for categorical attributes with multi-view heterogeneous data characteristics. This paper proposes a novel multi-view heterogeneous fusion model (MVHF), which first captures basic coupling information for each view and then fuses these heterogeneous information from different views by multi-kernel metric learning, to measure the intrinsic distances between this type of categorical attributes; based on these measured distances, further, we use the manifold learning method to learn a high-quality numerical embedding for each categorical value. Experiments on 33 mixed data sets demonstrate that MVHF-enabled classification significantly enhances the performance, compared with state-of-the-art distance metrics or embedding competitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aha DW, Kibler D, Albert MK (1991) Instance-based learning algorithms. Mach Learn 6(1):37–66

    Google Scholar 

  • Aitchison J, Aitken CG (1976) Multivariate binary discrimination by the kernel method. Biometrika 63(3):413–420

    MathSciNet  MATH  Google Scholar 

  • Alexandridis A, Chondrodima E, Giannopoulos N, Sarimveis H (2017) A fast and efficient method for training categorical radial basis function networks. IEEE Trans Neural Netw Learn Syst 28(11):2831–2836

    Google Scholar 

  • Bashon Y, Neagu D, Ridley MJ (2013) A framework for comparing heterogeneous objects: on the similarity measurements for fuzzy, numerical and categorical attributes. Soft Comput 17(9):1595–1615

    Google Scholar 

  • Bengio Y, Courville A, Vincent P (2013) Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell 35(8):1798–1828

    Google Scholar 

  • Boriah S, Chandola V, Kumar V (2008) Similarity measures for categorical data: a comparative evaluation. In: Proceedings of the 2008 SIAM international conference on data mining, SIAM, pp 243–254

  • Cao L (2015) Coupling learning of complex interactions. Inf Process Manag 51(2):167–186

    Google Scholar 

  • Cao F, Liang J, Li D, Bai L, Dang C (2012) A dissimilarity measure for the k-modes clustering algorithm. Knowl Based Syst 26:120–127

    Google Scholar 

  • Cerda P, Varoquaux G, Kégl B (2018) Similarity encoding for learning with dirty categorical variables. Mach Learn 107:1477–1494

    MathSciNet  MATH  Google Scholar 

  • Chang X, Nie F, Wang S, Yang Y, Zhou X, Zhang C (2016) Compound rank-k projections for bilinear analysis. IEEE Trans Neural Netw Learn Syst 27(7):1502–1513

    MathSciNet  Google Scholar 

  • Chang X, Yu Y, Yang Y, Xing EP (2017) Semantic pooling for complex event analysis in untrimmed videos. IEEE Trans Pattern Anal Mach Intell 39(8):1617–1632

    Google Scholar 

  • Chen L, Wang S, Wang K, Zhu J (2016a) Soft subspace clustering of categorical data with probabilistic distance. Pattern Recognit 51:322–332

    Google Scholar 

  • Chen L, Ye Y, Guo G, Zhu J (2016b) Kernel-based linear classification on categorical data. Soft Comput 20(8):2981–2993

    MATH  Google Scholar 

  • Cohen P, West SG, Aiken LS (2014) Applied multiple regression/correlation analysis for the behavioral sciences. Psychology Press, London

    Google Scholar 

  • Cox MAA, Cox TF (2001) Multidimensional scaling. J R Stat Soc 46(2):1050–1057

    MATH  Google Scholar 

  • Croft WB, Metzler D, Strohman T (2010) Search engines: Information retrieval in practice, vol 283. Addison-Wesley, Reading

    Google Scholar 

  • Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7(Jan):1–30

    MathSciNet  MATH  Google Scholar 

  • Diab DM, El Hindi K (2018) Using differential evolution for improving distance measures of nominal values. Appl Soft Comput 64:14–34

    Google Scholar 

  • Frank A, Asuncion A (2010) UCI machine learning repository. School of Information and Computer Science, University of California, Irvine

    Google Scholar 

  • Golinko E, Sonderman T, Zhu X (2017) CNFL: categorical to numerical feature learning for clustering and classification. In: 2017 IEEE second international conference on data science in cyberspace (DSC). IEEE, pp 585–594

  • Guo C, Berkhahn F (2016) Entity embeddings of categorical variables. arXiv preprint arXiv:1604.06737

  • Hernández-Pereira E, Suárez-Romero JA, Fontenla-Romero O, Alonso-Betanzos A (2009) Conversion methods for symbolic features: a comparison applied to an intrusion detection problem. Expert Syst Appl 36(7):10612–10617

    Google Scholar 

  • Hsu CW, Chang CC, Lin CJ et al (2003) A practical guide to support vector classification

  • Ienco D, Pensa RG (2016) Positive and unlabeled learning in categorical data. Neurocomputing 196:113–124

    Google Scholar 

  • Ienco D, Pensa RG, Meo R (2012) From context to distance: learning dissimilarity for categorical data clustering. ACM Trans Knowl Discov Data (TKDD) 6(1):1

    Google Scholar 

  • Jain P, Kulis B, Dhillon IS (2010) Inductive regularized learning of kernel functions. In: Advances in neural information processing systems, pp 946–954

  • Jain P, Kulis B, Davis JV, Dhillon IS (2012) Metric and kernel learning using a linear transformation. J Mach Learn Res 13(Mar):519–547

    MathSciNet  MATH  Google Scholar 

  • Jia H, Cheung J, Liu J (2016) A new distance metric for unsupervised learning of categorical data. IEEE Trans Neural Netw Learn Syst 27(5):1065–1079

    MathSciNet  Google Scholar 

  • Jian S, Cao L, Lu K, Gao H (2018a) Unsupervised coupled metric similarity for non-IID categorical data. IEEE Trans Knowl Data Eng 30:1810–1823

    Google Scholar 

  • Jian S, Pang G, Cao L, Lu K, Gao H (2018b) CURE: flexible categorical data representation by hierarchical coupling learning. IEEE Trans Knowl Data Eng 31:853–866

    Google Scholar 

  • Kasif S, Salzberg S, Waltz D, Rachlin J, Aha DW (1998) A probabilistic framework for memory-based reasoning. Artif Intell 104(1–2):287–311

    MathSciNet  MATH  Google Scholar 

  • Kim K, Js Hong (2017) A hybrid decision tree algorithm for mixed numeric and categorical data in regression analysis. Pattern Recognit Lett 98:39–45

    Google Scholar 

  • Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22(1):79–86

    MathSciNet  MATH  Google Scholar 

  • Le SQ, Ho TB (2005) An association-based dissimilarity measure for categorical data. Pattern Recognit Lett 26(16):2549–2557

    Google Scholar 

  • LeCun Y, Bottou L, Orr GB, Müller K (2012) Efficient backprop. In: Montavon G, Orr GB, Müller KR (eds) Neural networks: tricks of the trade, 2nd edn. Springer, Berlin, pp 9–48

    Google Scholar 

  • Li C, Jiang L, Li H, Wu J, Zhang P (2017a) Toward value difference metric with attribute weighting. Knowl Inf Syst 50(3):795–825

    Google Scholar 

  • Li Z, Nie F, Chang X, Yang Y (2017b) Beyond trace ratio: weighted harmonic mean of trace ratios for multiclass discriminant analysis. IEEE Trans Knowl Data Eng 29(10):2100–2110

    Google Scholar 

  • Li Q, Xiong Q, Ji S, Wen J, Gao M, Yu Y, Xu R (2019) Using fine-tuned conditional probabilities for data transformation of nominal attributes. Pattern Recognit Lett 128:107–114

    Google Scholar 

  • Müller B, Reinhardt J, Strickland MT (2012) Neural networks: an introduction. Springer, Berlin

    MATH  Google Scholar 

  • Nadeau C, Bengio Y (2003) Inference for the generalization error. Mach Learn 52(3):239–281

    MATH  Google Scholar 

  • Ng MK, Mark Junjie L, Joshua Zhexue H, Zengyou H (2007) On the impact of dissimilarity measure in k-modes clustering algorithm. IEEE Trans Pattern Anal Mach Intell 29(3):503–507

    Google Scholar 

  • Ortakaya AF (2017) Independently weighted value difference metric. Pattern Recognit Lett 97:61–68

    Google Scholar 

  • Ouyang D, Li Q, Racine J (2006) Cross-validation and the estimation of probability distributions with categorical data. J Nonparametr Stat 18(1):69–100

    MathSciNet  MATH  Google Scholar 

  • Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1986) Numerical recipes. The art of scientific computing. Cambridge University, London

    MATH  Google Scholar 

  • Stanfill C, Waltz D (1986) Toward memory-based reasoning. Commun ACM 29(12):1213–1228

    Google Scholar 

  • Wang C, Dong X, Zhou F, Cao L, Chi CH (2015) Coupled attribute similarity learning on categorical data. IEEE Trans Neural Netw Learn Syst 26(4):781–797

    MathSciNet  Google Scholar 

  • Wang H, Feng L, Liu Y (2016) Metric learning with geometric mean for similarities measurement. Soft Comput 20(10):3969–3979

    Google Scholar 

  • Zhang K, Wang Q, Chen Z, Marsic I, Kumar V, Jiang G, Zhang J (2015) From categorical to numerical: multiple transitive distance learning and embedding. In: Proceedings of the 2015 SIAM international conference on data mining. SIAM, pp 46–54

  • Zhao W, Li Q, Zhu C, Song J, Liu X, Yin J (2018) Model-aware categorical data embedding: a data-driven approach. Soft Comput 22:3603–3619

    MATH  Google Scholar 

  • Zheng Q, Diao X, Cao J, Liu Y, Li H, Yao J, Chang C, Lv G (2019) From whole to part: reference-based representation for clustering categorical data. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2019.2911118

    Article  Google Scholar 

  • Zhou ZH (2016) Machine learning. Tsinghua Press, Beijing

    Google Scholar 

  • Zhu C, Cao L, Liu Q, Yin J, Kumar V (2018) Heterogeneous metric learning of categorical data with hierarchical couplings. IEEE Trans Knowl Data Eng 30(7):1254–1267

    Google Scholar 

Download references

Acknowledgements

We thank anonymous reviewers for their valuable comments and suggestions. The work was supported by the Key Research Program of Chongqing Science & Technology Commission (Grant No. CSTC2017jcyjBX0025 and CSTC2019jscx-zdztzx0043), the Science and Technology Major Special Project of Guangxi (Grant No. GKAA17129002), the National Natural Science Foundations of China (Grant No. 61771077), and the National Key R&D Program of China (Grant No. 2018YFF0214706), Graduate Scientific Research and Innovation Foundation of Chongqing (Grant No. CYB19072 and CYS19028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingyu Xiong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by V. Loia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Xiong, Q., Ji, S. et al. Multi-view heterogeneous fusion and embedding for categorical attributes on mixed data. Soft Comput 24, 10843–10863 (2020). https://doi.org/10.1007/s00500-019-04586-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-019-04586-z

Keywords

Navigation