Skip to main content
Log in

Artificial bee colony optimization-inspired synergetic study of fractional-order economic production quantity model

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Inventory control is one of the most widely recognized issues in the reality. This investigation manages the utilization of fractional derivatives and integration on an inventory control problem. The memory of a dynamical model is a highly concerned issue which is commonly neglected by the models described in terms of integer-order differential equation. The memory capturing the power of fractional derivative (in Caputo’s sense) is utilized here to describe an economic production quantity model with deterioration when the demand depends on price and stock and production is stock dependent. Also, this study covers the integer-order model with the same assumptions as a memoryless model and a particular case of the fractional model. Due to the complex nature of the model, numerical optimization with the help of a modified artificial bee colony algorithm is done instead of the analytical approach of optimization. Finally, we have performed a sensitivity analysis in order to make a fruitful conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbasbandy S (2007) An approximation solution of a nonlinear equation with Riemann–Liouville’s fractional derivatives by He’s variational iteration method. J Comput Appl Math 207:53–58

    Article  MathSciNet  MATH  Google Scholar 

  • Agila A, Baleanu D, Eid R, Iranfoglu B (2016) Applications of the extended fractional Euler–Lagrange equations model to freely oscillating dynamical systems. Rom J Phys 61:350–359

    Google Scholar 

  • Agrawal OP, Tenreiro-Machado JA, Sabatier I (2004) Fractional derivatives and their applications. Nonlinear Dyn 38:191–206

    Article  Google Scholar 

  • Allahviranloo T, Salahshour S, Abbasbandy S (2012) Explicit solutions of fractional differential equations with uncertainty. Soft Comput 16(2):297–302. https://doi.org/10.1007/s00500-011-0743-y

    Article  MATH  Google Scholar 

  • Arikoglu A, Ozkol I (2009) Solution of fractional integro-differential equations by using fractional differential transform method. Chaos Solitons Fractals 40:521–529

    Article  MathSciNet  MATH  Google Scholar 

  • Baleanu D, Gven ZB, Tenreiro-Machado JA (2010) New trends in nanotechnology and fractional calculus applications. Springer, New York

    Book  Google Scholar 

  • Baleanu D, Jajarmi A, Hajipour M (2018a) On the nonlinear dynamical systems within the generalized fractional derivatives with Mittag–Leffler kernel. Nonlinear Dyn 94(1):397–414

    Article  MATH  Google Scholar 

  • Baleanu D, Jajarmi A, Bonyah E, Hajipour M (2018b) New aspects of the poor nutrition in the life cycle within the fractional calculus. Adv Differ Equ 1:230

    Article  MathSciNet  MATH  Google Scholar 

  • Bayın S (2011) Fractional calculus and its applications to science and engineering, slides of the seminars IAM-METU (21, Dec 2010). Feza Gürsey Institute (17, Feb 2011), p 1

  • Bhrawy AH, Tharwat MM, Yildirim A (2013) A new formula for fractional integrals of Chebyshev polynomials: application for solving multi-term fractional differential equations. Appl Math Model 37:4245–4252

    Article  MathSciNet  MATH  Google Scholar 

  • Boral S, Howard I, Chaturvedi SK, Mckee K, Naikan VNA (2019) An integrated approach for fuzzy failure modes and effects analysis using AHP and fuzzy MAIRCA. Eng Fail Anal. https://doi.org/10.1016/j.engfailanal.2019.104195

    Article  Google Scholar 

  • Cherif H, Ladhari T (2016) A novel multi-criteria inventory classification approach: artificial bee colony algorithm with VIKOR method. In: Czachorski T, Gelenbe E, Grochla K, Lent R (eds) Computer and information sciences, ISCIS 2016, communications in computer and information science, vol 659. Springer, Cham

    Google Scholar 

  • Das AK, Roy TK (2014) Role of fractional calculus to the generalized inventory model. J Glob Res Comput Sci 5(2):11–23

    MathSciNet  Google Scholar 

  • Das AK, Roy TK (2015) Fractional order EOQ model with linear trend of time-dependent demand. Int J Intell Syst Appl 03:44–53

    Google Scholar 

  • Das AK, Roy TK (2017) Fractional order generalized EPQ model. Int J Comput Appl Math 12(2):525–536

    Google Scholar 

  • Diethelm K, Baleanu D, Scalas E (2012) Fractional calculus: models and numerical methods. World Scientific, Singapore

    MATH  Google Scholar 

  • Duan JS, Chaolu T, Rach R, Lu L (2013) The Adomian decomposition method with convergence acceleration techniques for nonlinear fractional differential equations. Comput Math Appl 66:728–736

    Article  MathSciNet  MATH  Google Scholar 

  • Efe MÖ (2009) ADALINE based robust control in robotics: a Riemann–Liouville fractional differintegration based learning scheme. Soft Comput 13(1):23–29. https://doi.org/10.1007/s00500-008-0289-9

    Article  MathSciNet  MATH  Google Scholar 

  • Farooq MU, Salman Q, Arshad M, Khan I, Akhtar R, Kim S (2019) An artificial bee colony algorithm based on a multi-objective framework for supplier integration. Appl Sci 9(3):588. https://doi.org/10.3390/app9030588

    Article  Google Scholar 

  • Fenglei L, Haijun D, Xing F (2007) The parameter improvement of bee colony algorithm in tsp problem. Sci Pap Online 2:11–12

    Google Scholar 

  • Gao WF, Liu SY (2012) A modified artificial bee colony algorithm. Comput Oper Res 39(3):687–697

    Article  MATH  Google Scholar 

  • Guo Y, He J, Xu L, Liu W (2019) A novel multi-objective particle swarm optimization for comprehensible credit scoring. Soft Comput 23(18):9009–9023. https://doi.org/10.1007/s00500-018-3509-y

    Article  Google Scholar 

  • Hajipour M, Jajarmi A, Baleanu D, Guang Sun H (2019) On an accurate discretization of a variable-order fractional reaction–diffusion equation. Commun Nonlinear Sci Numer Simul 69:119–133

    Article  MathSciNet  Google Scholar 

  • Huang H, Lv L, Ye S, Hao Z (2019) Particle swarm optimization with convergence speed controller for large-scale numerical optimization. Soft Comput 23(12):4421–4437. https://doi.org/10.1007/s00500-018-3098-9

    Article  Google Scholar 

  • Iyiola OS, Asante-Asamani EO, Wade BA (2018) A real distinct poles rational approximation of generalized Mittag–Leffler functions and their inverses: applications to fractional calculus. J Comput Appl Math 330(1):307–317

    Article  MathSciNet  MATH  Google Scholar 

  • Jajarmi A, Baleanu D (2018a) A new fractional analysis on the interaction of HIV with CD4+ T-cells. Chaos Solitons Fractals 113:221–229

    Article  MathSciNet  MATH  Google Scholar 

  • Jajarmi A, Baleanu D (2018b) Suboptimal control of fractional-order dynamic systems with delay argument. J Vib Control 24(12):2430–2446

    Article  MathSciNet  MATH  Google Scholar 

  • Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical report TR06. Erciyes University Press, Erciyes

  • Karaboga D, Akay B (2009) A comparative study of artificial bee colony algorithm. Appl Math Comput 214(1):108–132

    MathSciNet  MATH  Google Scholar 

  • Karaboga D, Basturk B (2007) Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. In: International fuzzy systems association world congress. Springer, Berlin, pp 789–798

  • Karaboga D, Akay B, Ozturk C (2007) Artificial bee colony (ABC) optimization algorithm for training feed-forward neural networks. In: International conference on modeling decisions for artificial intelligence. Springer, Berlin, pp 318–329

  • Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elsevier Science B.V., Ameserdam

    MATH  Google Scholar 

  • Kiran MS, Hakli H, Gunduz M, Uguz H (2015) Artificial bee colony algorithm with variable search strategy for continuous optimization. Inf Sci 300:140–157

    Article  MathSciNet  Google Scholar 

  • Machado JA, Mata ME (2015) Pseudo phase plane and fractional calculus modeling of western global economic downturn. Commun Nonlinear Sci Numer Simul 22:396–406

    Article  MathSciNet  Google Scholar 

  • Magin RL (2006) Fractional calculus in bioengineering. Begell House Publisher, Inc., Connecticut

    Google Scholar 

  • Mainardi F (1997) Fractional calculus. In: Carpinteri A, Mainardi F (eds) Fractal and fractional calculus in continuum mechanics, international centre for mechanical science (course and lectures), vol 378. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2664-6_7

    Chapter  Google Scholar 

  • Mainardi F, Pagnini G, Gorenflo R (2007) Some aspects of fractional diffusion equations of single and distributed order. Appl Math Comput 187:295–305

    MathSciNet  MATH  Google Scholar 

  • Meng R, Yin D, Drapaca CS (2019) Variable-order fractional description of compression deformation of amorphous glassy polymers. Comput Mech 64:163–171

    Article  MathSciNet  MATH  Google Scholar 

  • Miller KS, Ross B (1993) An introduction to the fractional calculus and differential equations. Wiley, New York

    MATH  Google Scholar 

  • Pakhira R, Ghosh U, Sarkar S (2018a) Study of memory effects in an inventory model. Appl Math Sci 12(17):797–824

    Google Scholar 

  • Pakhira R, Ghosh U, Sarkar S (2018b) Application of memory effects in an inventory model with linear demand and no shortage. Int J Res Adv Technol 6(8):1853–1871

    Google Scholar 

  • Podlubny I (1999) Fractional differential equations. Academic Press, San Diego

    MATH  Google Scholar 

  • Pramanik P, Maity MK (2019a) Trade credit policy of an inventory model with imprecise variable demand: an ABC-GA approach. Soft Comput. https://doi.org/10.1007/s00500-019-04502-5

    Article  Google Scholar 

  • Pramanik P, Maity MK (2019b) An inventory model for deterioration items with inflation induced variable demand under two level partial trade credit: a hybrid ABC-GA approach. Eng Appl Artif Intell 85:194–207. https://doi.org/10.1016/j.engappai.2019.06.013

    Article  Google Scholar 

  • Rahaman M, Mondal SP, Shaikh AA et al (2020) Arbitrary-order economic production quantity model with and without deterioration: generalized point of view. Adv Differ Equ 2020:16. https://doi.org/10.1186/s13662-019-2465-x

    Article  MathSciNet  Google Scholar 

  • Singh J (2019) A new analysis for fractional rumor spreading dynamical model in a social network with Mittag–Leffler law. Chaos 29:013–137

    Article  MathSciNet  Google Scholar 

  • Singh J, Kumar D, Hammouch Z, Atangana A (2018a) A fractional epidemiological model for computer viruses pertaining to a new fractional derivative. Appl Math Comput 316:504–515

    MathSciNet  MATH  Google Scholar 

  • Singh J, Kumar D, Baleanu D, Rathore S (2018b) An efficient numerical algorithm for the fractional Drinfeld–Sokolov–Wilson equation. Appl Math Comput 335:12–24

    MathSciNet  MATH  Google Scholar 

  • Singh J, Kumar J, Baleanu D (2018c) On the analysis of fractional diabetes model with exponential law. Adv Differ Equ. https://doi.org/10.1186/s13662-018-1680-1

    Article  MathSciNet  MATH  Google Scholar 

  • Singh J, Secer A, Swroop R, Kumar D (2018d) A reliable analytical approach for a fractional model of advection–dispersion equation. Nonlinear Eng. https://doi.org/10.1515/nleng-2018-0027

    Article  Google Scholar 

  • Singh J, Kumar D, Baleanu D (2019) New aspects of fractional Biswas–Milovic model with Mittag–Leffler law. Math Model Nat Phenom 14(3):303

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu G, Kwong S (2010) Gbest-guided artificial bee colony algorithm for numerical function optimization. Appl Math Comput 217(7):3166–3173

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sankar Prasad Mondal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by V. Loia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahaman, M., Mondal, S.P., Shaikh, A.A. et al. Artificial bee colony optimization-inspired synergetic study of fractional-order economic production quantity model. Soft Comput 24, 15341–15359 (2020). https://doi.org/10.1007/s00500-020-04867-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-020-04867-y

Keywords

Navigation